Hong-Bin Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929920/publications.pdf

Version: 2024-02-01

54	1,765 citations	236925	276875
papers	citations	h-index	g-index
55	55	55	2517
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The chemistry of selective ring-opening catalysts. Applied Catalysis A: General, 2005, 294, 1-21.	4.3	182
2	A photoluminescent microporous metal organic anionic framework for nitroaromatic explosive sensing. Journal of Materials Chemistry A, 2013, 1, 4525.	10.3	118
3	Nickel Molybdenum Nitride Nanorods Grown on Ni Foam as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & (2018, 10, 30400-30408).	8.0	97
4	Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Derived Romp; Interfaces, 2017, 9, 40171-40179.	8.0	83
5	Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage. Chemical Communications, 2012, 48, 4950.	4.1	66
6	A photoluminescent interpenetrating diamondoid metal–organic framework based on Cu4I4 clusters with high thermal stability. CrystEngComm, 2009, 11, 1834.	2.6	65
7	Two-dimensional ultra-thin SiO $\times \times /$ sub $\times (0 \text{ < } \times \text{ < } 2)$ nanosheets with long-term cycling stability as lithium ion battery anodes. Chemical Communications, 2016, 52, 4341-4344.	4.1	64
8	Solvent-Induced Synthesis of Zinc(II) and Manganese(II) Coordination Polymers with a Semirigid Tetracarboxylic Acid. Crystal Growth and Design, 2011, 11, 2444-2452.	3.0	62
9	An Extraâ€Largeâ€Pore Zeolite with Intersecting 18â€, 12â€, and 10â€Membered Ring Channels. Angewandte Ch - International Edition, 2014, 53, 9592-9596.	hemie 13.8	57
10	An infinite photoluminescent coordination nanotube [CuSCN(L)]·(DMF)0.5. CrystEngComm, 2009, 11, 246-248.	2.6	55
11	A robust microporous metal–organic framework constructed from a flexible organic linker for acetylene storage at ambient temperature. Journal of Materials Chemistry, 2012, 22, 10195.	6.7	55
12	Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes. Physical Chemistry Chemical Physics, 2016, 18, 1521-1525.	2.8	52
13	Cascade photoredox/gold catalysis: access to multisubstituted indoles via aminoarylation of alkynes. Chemical Communications, 2016, 52, 14400-14403.	4.1	46
14	A 3-dimensional coordination polymer with a fluorite structure constructed from a semi-rigid tetrahedral ligand. CrystEngComm, 2010, 12, 2669.	2.6	43
15	Two photoluminescent metal–organic frameworks based on a BODIPY-derived bipyridine ligand. CrystEngComm, 2013, 15, 7315.	2.6	41
16	Room-Temperature Solution Synthesis of Mesoporous Silicon for Lithium Ion Battery Anodes. ACS Applied Materials & Diterfaces, 2017, 9, 40386-40393.	8.0	41
17	Rational synthesis of a microporous metal–organic framework with PtS topology using a semi-rigid tetrahedral linker. CrystEngComm, 2010, 12, 2008.	2.6	38
18	Electron Catalytic Photochemical Cascade Carbodifluoroalkylation/Radical Cyclization of Methyleneâ€2â€oxazolines. Advanced Synthesis and Catalysis, 2017, 359, 1672-1677.	4.3	36

#	Article	IF	CITATIONS
19	A Stable Extraâ€Largeâ€Pore Zeolite with Intersecting 14―and 10â€Memberedâ€Ring Channels. Chemistry - A European Journal, 2016, 22, 14367-14372.	3.3	33
20	Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility. Chemistry - A European Journal, 2016, 22, 6268-6276.	3.3	31
21	One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries. Chemical Communications, 2020, 56, 1109-1112.	4.1	30
22	A 4-connected 3D porous coordination polymer with a binodal 6284 net built on tetrahedral quadridentate and bidentate linkers. CrystEngComm, 2010, 12, 1635.	2.6	29
23	Cuprous iodide coordination polymers (CuI)x(L)y·z(solvent) built on linear thioether linkers. CrystEngComm, 2011, 13, 2578.	2.6	27
24	Construction of lanthanide metal–organic frameworks with highly-connected topology based on a tetrapodal linker. CrystEngComm, 2013, 15, 6229.	2.6	27
25	A robust indium–porphyrin framework for CO ₂ capture and chemical transformation. Dalton Transactions, 2016, 45, 18730-18736.	3.3	27
26	Synthesis and properties of four coordination polymers built from a semi-rigid tripod carboxylic acid. CrystEngComm, 2013, 15, 8989.	2.6	26
27	Hollow-structured Si/SiC@C nanospheres as highly active catalysts for cycloaddition of epoxides with CO ₂ under mild conditions. Dalton Transactions, 2016, 45, 2369-2373.	3.3	25
28	Solution Synthesis of Porous Silicon Particles as an Anode Material for Lithium Ion Batteries. Chemistry - A European Journal, 2019, 25, 9071-9077.	3.3	25
29	Facile preparation of extra-large pore zeolite ITQ-37 based on supramolecular assemblies as structure-directing agents. CrystEngComm, 2016, 18, 2735-2741.	2.6	24
30	Nickel-assisted one-pot preparation of graphenic carbon matrices embedded with silicon nanoparticles as anode materials for lithium ion batteries. Carbon, 2021, 179, 266-274.	10.3	23
31	Structural diversity and properties of coordination polymers built from a semi-rigid tetradentenate carboxylic acid. CrystEngComm, 2012, 14, 824-831.	2.6	22
32	Step-by-step assembly preparation of core–shell Si-mesoporous TiO ₂ composite nanospheres with enhanced lithium-storage properties. Dalton Transactions, 2017, 46, 11542-11546.	3.3	21
33	An unprecedented (3,7)-connected microporous solvatochromic coordination polymer built on a semirigid tripod pyridinium-4-olate ligand. CrystEngComm, 2011, 13, 6010.	2.6	20
34	A series of robust metal–porphyrinic frameworks based on rare earth clusters and their application in N–H carbene insertion. Dalton Transactions, 2016, 45, 17108-17112.	3.3	18
35	Facile preparation of yolk–shell structured Si/SiC@C@TiO ₂ nanocomposites as highly efficient photocatalysts for degrading organic dye in wastewater. RSC Advances, 2016, 6, 4063-4069.	3.6	17
36	Structure–direction towards the new large pore zeolite NUD-3. Chemical Communications, 2021, 57, 191-194.	4.1	15

#	Article	IF	Citations
37	Charge, adsorption, water stability and bandgap tuning of an anionic Cd(⟨scp⟩ii⟨ scp⟩) porphyrinic metal–organic framework. Dalton Transactions, 2019, 48, 8678-8692.	3.3	14
38	An Extraâ€Largeâ€Pore Pure Silica Zeolite with 16Ö8Ö8â€Membered Ring Pore Channels Synthesized using an Aromatic Organic Directing Agent. Angewandte Chemie - International Edition, 2020, 59, 3948-3951.	13.8	14
39	Four cluster-based coordination polymers built on a semirigid tripod tricarboxylate ligand. CrystEngComm, 2012, 14, 8215.	2.6	13
40	Construction of three-dimensional metal–organic frameworks in the presence of a tetrahedral ligand and a secondary bidentate linker. CrystEngComm, 2013, 15, 6199.	2.6	9
41	Facile synthesis of large-pore zeolite ITQ-26 by using an easily-available imidazolium as structure-directing agent. Microporous and Mesoporous Materials, 2019, 276, 232-238.	4.4	9
42	Solventâ€Induced Growth of Freeâ€Standing 2D Si Nanosheets. Small, 2020, 16, e2005426.	10.0	9
43	The synthesis, structure and magnetism studies of two manganese sulfates with a 3D zeolite GIS framework and 1D chain structure. CrystEngComm, 2013, 15, 435-438.	2.6	7
44	Designed synthesis of an extra-large pore zeolite with a 14-membered ring channel via supramolecular assembly templating approach. Microporous and Mesoporous Materials, 2019, 290, 109654.	4.4	7
45	Synthesis, Structure and Properties of an Extraâ€Largeâ€Pore Aluminosilicate Zeolite NUDâ€6. Chemistry - A European Journal, 2020, 26, 17143-17148.	3.3	6
46	Two anionic Ni(II) porphyrinic metalâ^organic frameworks: Syntheses, flexibility and roles in visible-light photocatalytic CO2 reduction to CO in the Ru(bpy)3Cl2/TEA/CH3CN system. Journal of Solid State Chemistry, 2020, 287, 121340.	2.9	5
47	Template-free synthesis of flower-like hierarchical vanadium nitride/carbon composites for long cycle-life half and full lithium-ion batteries. Journal of Power Sources, 2022, 520, 230924.	7.8	5
48	Ionothermal Synthesis of Crystalline Nanoporous Silicon and Its Use as Anode Materials in Lithium-Ion Batteries. Nanoscale Research Letters, 2019, 14, 196.	5.7	3
49	An Extraâ€Largeâ€Pore Pure Silica Zeolite with 16×8×8â€Membered Ring Pore Channels Synthesized using an Aromatic Organic Directing Agent. Angewandte Chemie, 2020, 132, 3976-3979.	2.0	3
50	Drop-casting preparation of a binder-free SiOx anode with micron-sized SiOx particles for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2022, , 165682.	5.5	3
51	Synthesis and characterization of a layered aluminosilicate NUD-11 and its transformation to a 3D stable zeolite. Dalton Transactions, 2020, 49, 11682-11688.	3.3	2
52	Synthesis and Characterization of A Stable Extra‣argeâ€Pore Zeolite with 15×12×12 Memberâ€Ring Channels. Chemistry - A European Journal, 0, , .	3.3	2
53	Direct Synthesis of An Aluminosilicate POS Zeolite with Intersecting 12×11×11â€Memberâ€Ring Pore Channels by Using a Designed Organic Structureâ€Directing Agent. Chemistry - A European Journal, 2022, 28, .	3.3	1
54	Frontispiece: Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility. Chemistry - A European Journal, 2016, 22, .	3.3	0