
Urszula Stachewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/49299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	34
2	Smart Textile for Building and Living. Autex Research Journal, 2022, 22, 493-496.	1.1	3
3	Topical electrospun patches loaded with oil for effective gamma linoleic acid transport and skin hydration towards atopic dermatitis skincare. Chemical Engineering Journal, 2022, 429, 132256.	12.7	18
4	Smart textiles and the indoor environment of buildings. Indoor and Built Environment, 2022, 31, 1443-1446.	2.8	7
5	Electrospun PEO/rGO Scaffolds: The Influence of the Concentration of rGO on Overall Properties and Cytotoxicity. International Journal of Molecular Sciences, 2022, 23, 988.	4.1	9
6	The Significance of Electrical Polarity in Electrospinning: A Nanoscale Approach for the Enhancement of the Polymer Fibers' Properties. Macromolecular Materials and Engineering, 2022, 307, .	3.6	19
7	Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. Journal of Materials Chemistry B, 2022, 10, 1763-1774.	5.8	10
8	Modification of electrospun PI membranes with active chlorine for antimicrobial skin patches applications. Applied Surface Science, 2022, 592, 153302.	6.1	8
9	Stretchable skin hydrating PVB patches with controlled pores' size and shape for deliberate evening primrose oil spreading, transport and release. , 2022, 136, 212786.		15
	Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for		

10

URSZULA STACHEWICZ

#	Article	IF	CITATIONS
19	Micro-sized "pelmeni" - A universal microencapsulation approach overview. Materials and Design, 2021, 202, 109527.	7.0	16
20	A Pathway From Porous Particle Technology Toward Tailoring Aerogels for Pulmonary Drug Administration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 671381.	4.1	18
21	On-demand Electrohydrodynamic Jetting of an Ethylene Glycol and Water Mixture—System of Controlled Picoliter Fluid Deposition. Journal of Imaging Science and Technology, 2021, 65, 040405-1-040405-23.	0.5	0
22	Critical length reinforcement in core-shell electrospun fibers using composite strategies. Composites Science and Technology, 2021, 211, 108867.	7.8	13
23	The effect of multiple freeze-thaw cycles on the viscoelastic properties and microstructure of bovine superficial digital flexor tendon. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104582.	3.1	7
24	Development of advanced floating poly(lactic acid)-based materials for colored wastewater treatment. Journal of Supercritical Fluids, 2021, 177, 105328.	3.2	17
25	Microstructure study of fractured polar bear hair for toughening, strengthening, stiffening designs <i>via</i> energy dissipation and crack deflection mechanisms in materials. Molecular Systems Design and Engineering, 2021, 6, 997-1002.	3.4	3
26	Electrospun PCL Patches with Controlled Fiber Morphology and Mechanical Performance for Skin Moisturization via Long-Term Release of Hemp Oil for Atopic Dermatitis. Membranes, 2021, 11, 26.	3.0	13
27	Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 5339-5362.	5.2	76
28	Fiber-Based Composite Meshes with Controlled Mechanical and Wetting Properties for Water Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 1665-1676.	8.0	59
29	Humidity Controlled Mechanical Properties of Electrospun Polyvinylidene Fluoride (PVDF) Fibers. Fibers, 2020, 8, 65.	4.0	19
30	Teeth resorption at cement - enamel junction (CEJ) - Microscopy analysis. Micron, 2020, 137, 102913.	2.2	3
31	The Role of Electrical Polarity in Electrospinning and on the Mechanical and Structural Properties of As-Spun Fibers. Materials, 2020, 13, 4169.	2.9	32
32	Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment. ACS Applied Bio Materials, 2020, 3, 7666-7676.	4.6	24
33	The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 2020, 286, 102315.	14.7	97
34	Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency. RSC Advances, 2020, 10, 22335-22342.	3.6	25
35	Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration. Materials and Design, 2020, 194, 108915.	7.0	112
36	Improving water harvesting efficiency of fog collectors with electrospun random and aligned Polyvinylidene fluoride (PVDF) fibers. Sustainable Materials and Technologies, 2020, 25, e00191.	3.3	24

#	Article	IF	CITATIONS
37	Effect of Porous and Nonporous Polycaprolactone Fiber Meshes on CaCO ₃ Crystallization Through a Gas Diffusion Method. Crystal Growth and Design, 2020, 20, 5610-5625.	3.0	9
38	Collagen Fibers in Crocodile Skin and Teeth: A Morphological Comparison Using Light and Scanning Electron Microscopy. Journal of Bionic Engineering, 2020, 17, 669-676.	5.0	6
39	Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 13575-13583.	8.0	148
40	Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds. Materials Science and Engineering C, 2020, 110, 110668.	7.3	44
41	Hierarchical Composite Meshes of Electrospun PS Microfibers with PA6 Nanofibers for Regenerative Medicine. Materials, 2020, 13, 1974.	2.9	20
42	Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state. Reviews on Advanced Materials Science, 2020, 59, 487-505.	3.3	39
43	Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration. Biomedical Materials (Bristol), 2019, 14, 065006.	3.3	19
44	Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Materials Science and Engineering C, 2019, 104, 109883.	7.3	163
45	Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering, 2019, 6, 41.	3.5	32
46	Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomaterialia, 2019, 91, 270-283.	8.3	44
47	Electrospinning: Single-Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application (Adv. Mater. Interfaces 2/2019). Advanced Materials Interfaces, 2019, 6, 1970010.	3.7	2
48	Oxygen-Scavenging Multilayered Biopapers Containing Palladium Nanoparticles Obtained by the Electrospinning Coating Technique. Nanomaterials, 2019, 9, 262.	4.1	29
49	Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 582-593.	5.2	91
50	Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy, 2019, 57, 500-506.	16.0	67
51	Single‣tep Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Advanced Materials Interfaces, 2019, 6, 1801211.	3.7	38
52	Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers, 2019, 11, 34.	4.5	140
53	Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering C, 2019, 95, 397-408.	7.3	67
54	Biomimicking wetting properties of spider web from Linothele megatheloides with electrospun fibers. Materials Letters, 2018, 233, 211-214.	2.6	22

4

URSZULA STACHEWICZ

#	Article	IF	CITATIONS
55	Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities. European Polymer Journal, 2017, 91, 368-375.	5.4	29
56	ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. Journal of Materials Chemistry B, 2016, 4, 7936-7949.	5.8	44
57	Microscopy and supporting data for osteoblast integration within an electrospun fibrous network. Data in Brief, 2015, 5, 775-781.	1.0	1
58	Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS Applied Materials & Interfaces, 2015, 7, 16645-16652.	8.0	49
59	3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia, 2015, 27, 88-100.	8.3	99
60	Adhesion Anisotropy between Contacting Electrospun Fibers. Langmuir, 2014, 30, 6819-6825.	3.5	31
61	Wetting of Polyamide Film Surfaces with Electrospun Nanofibers. Materials Research Society Symposia Proceedings, 2012, 1403, 138.	0.1	2
62	Recording IR spectra for individual electrospun fibers using an in situ AFM-synchrotron technique. Materials Research Society Symposia Proceedings, 2012, 1424, 19.	0.1	5
63	Dependence of surface free energy on molecular orientation in polymer films. Applied Physics Letters, 2012, 100, .	3.3	17
64	Charge assisted tailoring of chemical functionality at electrospun nanofiber surfaces. Journal of Materials Chemistry, 2012, 22, 22935.	6.7	71
65	Size dependent mechanical properties of electrospun polymer fibers from a composite structure. Polymer, 2012, 53, 5132-5137.	3.8	89
66	Manufacture of Void-Free Electrospun Polymer Nanofiber Composites with Optimized Mechanical Properties. ACS Applied Materials & Interfaces, 2012, 4, 2577-2582.	8.0	78
67	An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. , 2012, 24, 344-357.		44
68	Enhanced Wetting Behavior at Electrospun Polyamide Nanofiber Surfaces. Langmuir, 2011, 27, 3024-3029.	3.5	65
69	Stress Delocalization in Crack Tolerant Electrospun Nanofiber Networks. ACS Applied Materials & Interfaces, 2011, 3, 1991-1996.	8.0	53
70	<i>In situ</i> tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy. Nanotechnology, 2011, 22, 365708.	2.6	77
71	Volume of liquid deposited per single event electrospraying controlled by nozzle front surface modification. Microfluidics and Nanofluidics, 2010, 9, 635-644.	2.2	9
72	Single event electrospraying of water. Journal of Aerosol Science, 2010, 41, 963-973.	3.8	19

URSZULA STACHEWICZ

#	Article	IF	CITATIONS
73	Stability regime of pulse frequency for single event electrospraying. Applied Physics Letters, 2009, 95, .	3.3	30
74	Relaxation Times in Single Event Electrospraying Controlled by Nozzle Front Surface Modification. Langmuir, 2009, 25, 2540-2549.	3.5	39
75	Single event AC – DC electrospraying. Journal of Physics: Conference Series, 2008, 142, 012043.	0.4	4
76	Experiments on single event electrospraying. Applied Physics Letters, 2007, 91, 254109.	3.3	17
77	Mechanical modulation at the lamellar level in osteonal bone. Journal of Materials Research, 2006, 21, 1913-1921.	2.6	141
78	Modification of Electrospun PI Membranes with Active Chlorine for Antimicrobial Skin Patches Applications. SSRN Electronic Journal, 0, , .	0.4	0