
Yuanwei Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929892/publications.pdf Version: 2024-02-01

VIIANNAFLLIN

#	Article	IF	CITATIONS
1	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	10.4	94
2	Oxidativeâ€Etchingâ€Assisted Synthesis of Centimeterâ€Sized Singleâ€Crystalline Graphene. Advanced Materials, 2016, 28, 3152-3158.	21.0	81
3	Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nature Communications, 2018, 9, 807.	12.8	78
4	An organic–inorganic hybrid perovskite logic gate for better computing. Journal of Materials Chemistry C, 2015, 3, 10793-10798.	5.5	77
5	Ultra-thin wafer technology and applications: A review. Materials Science in Semiconductor Processing, 2020, 105, 104681.	4.0	48
6	Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. Advanced Functional Materials, 2018, 28, 1705589.	14.9	42
7	Graphene–DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chemical Science, 2015, 6, 2469-2473.	7.4	40
8	Novel exciton dissociation behavior in tin-lead organohalide perovskites. Nano Energy, 2016, 27, 638-646.	16.0	28
9	Revealing Charge―and Temperatureâ€Dependent Movement Dynamics and Mechanism of Individual Molecular Machines. Small Methods, 2019, 3, 1900464.	8.6	21
10	Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals. ACS Nano, 2016, 10, 10317-10323.	14.6	16
11	Deep Dry Etching of Silicon with Scallop Size Uniformly Larger than 300 nm. Silicon, 2019, 11, 651-658.	3.3	15
12	Ultrahigh Photogain Nanoscale Hybrid Photodetectors. Small, 2015, 11, 2856-2861.	10.0	14
13	Uniformity improvement of deep silicon cavities fabricated by plasma etching with 12-inch wafer level. Journal of Micromechanics and Microengineering, 2019, 29, 105010.	2.6	10
14	The application of the scallop nanostructure in deep silicon etching. Nanotechnology, 2020, 31, 315301.	2.6	8
15	Detection of Mercury Ion with High Sensitivity and Selectivity Using a DNA/Graphene Oxide Hybrid Immobilized on Glass Slides. Biosensors, 2021, 11, 300.	4.7	8
16	Chemical Modification of Graphene and Its Applications. Acta Chimica Sinica, 2014, 72, 277.	1.4	8
17	Perspective on chymotrypsin detection. New Journal of Chemistry, 2020, 44, 20921-20929.	2.8	3
18	Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.	2.6	3

Yuanwei Lin

#	Article	IF	CITATIONS
19	Estimating the Etching Depth Limit in Deep Silicon Etching. , 2019, , .		2
20	Highly sensitive detection for cocaine using an aptamer-modified molybdenum disulfide/gold nanoparticle microarray. New Journal of Chemistry, 2020, 44, 13466-13471.	2.8	2
21	Towards Tilt-Free in Plasma Etching. Journal of Micromechanics and Microengineering, 0, , .	2.6	1
22	Towards Microstructures with Ultrahigh Aspect-Ratio and Verticality in Deep Silicon Etching. , 2020, , . \cdot		1
23	Molecular Physics: Revealing Charge―and Temperatureâ€Dependent Movement Dynamics and Mechanism of Individual Molecular Machines (Small Methods 12/2019). Small Methods, 2019, 3, 1970041.	8.6	Ο
24	A Segmented Plasma Etching Method for 2.5D/3D Through Silicon Vias. , 2021, , .		0