Qingming Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929813/publications.pdf

Version: 2024-02-01

20 papers 934 citations

623734 14 h-index 752698 20 g-index

20 all docs

20 docs citations

20 times ranked 1934 citing authors

#	Article	IF	CITATIONS
1	Free-Standing Single-Atom-Thick Iron Membranes Suspended in Graphene Pores. Science, 2014, 343, 1228-1232.	12.6	274
2	Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nature Communications, 2016, 7, 10426.	12.8	172
3	2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER). Journal of Catalysis, 2019, 370, 378-384.	6.2	114
4	Single Layer of Polymeric Cobalt Phthalocyanine: Promising Lowâ€Cost and Highâ€Activity Nanocatalysts for CO Oxidation. Small, 2013, 9, 3506-3513.	10.0	78
5	Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. Nature Communications, 2015, 6, 8935.	12.8	59
6	<i>InÂSitu</i> Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale. Physical Review Letters, 2020, 125, 246102.	7.8	34
7	Mechanism of Water Splitting on Gadolinium-Doped CeO ₂ (111): A DFT + <i>U</i> Study. Journal of Physical Chemistry C, 2019, 123, 5507-5517.	3.1	31
8	Critical Stable Length in Wrinkles of Two-Dimensional Materials. ACS Nano, 2020, 14, 2137-2144.	14.6	30
9	Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation. Physical Chemistry Chemical Physics, 2018, 20, 5173-5179.	2.8	21
10	Facile Doping in Two-Dimensional Transition-Metal Dichalcogenides by UV Light. ACS Applied Materials & Light &	8.0	18
11	Anomalous fracture in two-dimensional rhenium disulfide. Science Advances, 2020, 6, .	10.3	18
12	1D metal-dithiolene wires as a new class of bi-functional oxygen reduction and evolution single-atom electrocatalysts. Journal of Catalysis, 2021, 393, 140-148.	6.2	18
13	Site-specific electrical contacts with the two-dimensional materials. Nature Communications, 2020, 11, 3982.	12.8	16
14	The Mobile and Pinned Grain Boundaries in 2D Monoclinic Rhenium Disulfide. Advanced Science, 2020, 7, 2001742.	11.2	15
15	Toward high permeability, selectivity and controllability of water desalination with FePc nanopores. Physical Chemistry Chemical Physics, 2016, 18, 8140-8147.	2.8	11
16	Redox Photochemistry on Van Der Waals Surfaces for Reversible Doping in 2D Materials. Advanced Functional Materials, 2021, 31, 2009166.	14.9	9
17	Impact of Polar Edge Terminations of the Transition Metal Dichalcogenide Monolayers during Vapor Growth. Journal of Physical Chemistry C, 2018, 122, 3575-3581.	3.1	6
18	Role of macrocyclic salen-type Schiff base ligands in one-dimensional Co(II) complexes for superior activities toward oxygen reduction/evolution reactions. International Journal of Hydrogen Energy, 2022, 47, 27000-27011.	7.1	5

#	Article	IF	CITATIONS
19	Mechanical origin of martensite-like structures in two-dimensional ReS2. Communications Materials, 2021, 2, .	6.9	4
20	Unveiling the Critical Intermediate Stages During Chemical Vapor Deposition of Two-Dimensional Rhenium Diselenide. Chemistry of Materials, 2021, 33, 7039-7046.	6.7	1