## Linda A Zotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929645/publications.pdf

Version: 2024-02-01

331538 276775 1,719 44 21 41 h-index citations g-index papers 45 45 45 1991 all docs docs citations times ranked citing authors

| #  | Article                                                                                                                                                                                                                                          | IF                | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 1  | Constrained DFT for Molecular Junctions. Nanomaterials, 2022, 12, 1234.                                                                                                                                                                          | 1.9               | 1           |
| 2  | Adhesion of thin metallic layers on Au surfaces. Journal of Physics Condensed Matter, 2022, , .                                                                                                                                                  | 0.7               | 0           |
| 3  | Single-molecule conductance of dibenzopentalenes: antiaromaticity and quantum interference. Chemical Communications, 2021, 57, 745-748.                                                                                                          | 2.2               | 32          |
| 4  | The Role of Metal lons in the Electron Transport through Azurin-Based Junctions. Applied Sciences (Switzerland), 2021, 11, 3732.                                                                                                                 | 1.3               | 6           |
| 5  | Molecular Electronics. Applied Sciences (Switzerland), 2021, 11, 4828.                                                                                                                                                                           | 1.3               | 2           |
| 6  | Three-state molecular potentiometer based on a non-symmetrically positioned in-backbone linker. Journal of Materials Chemistry C, 2021, 9, 16282-16289.                                                                                          | 2.7               | 6           |
| 7  | Can Electron Transport through a Blue-Copper Azurin Be Coherent? An Ab Initio Study. Journal of Physical Chemistry C, 2021, 125, 1693-1702.                                                                                                      | 1.5               | 25          |
| 8  | Rational design of an unusual 2D-MOF based on Cu( <scp>i</scp> ) and 4-hydroxypyrimidine-5-carbonitrile as linker with conductive capabilities: a theoretical approach based on high-pressure XRD. Chemical Communications, 2020, 56, 9473-9476. | 2.2               | 6           |
| 9  | Backbone charge transport in double-stranded DNA. Nature Nanotechnology, 2020, 15, 836-840.                                                                                                                                                      | 15.6              | 46          |
| 10 | Taming quantum interference in single molecule junctions: induction and resonance are key. Physical Chemistry Chemical Physics, 2020, 22, 5638-5646.                                                                                             | 1.3               | 17          |
| 11 | Innenrù⁄4cktitelbild: A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch (Angew.) Tj ETQq1                                                                                                                                 | 1 1.0.7843<br>1.6 | 14 rgBT /⊙v |
| 12 | A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131, 11978-11985.                                                                                                                             | 1.6               | 1           |
| 13 | Tuning Structure and Dynamics of Blue Copper Azurin Junctions via Single Amino-Acid Mutations.<br>Biomolecules, 2019, 9, 611.                                                                                                                    | 1.8               | 16          |
| 14 | Can One Define the Conductance of Amino Acids?. Biomolecules, 2019, 9, 580.                                                                                                                                                                      | 1.8               | 29          |
| 15 | Mechanical Deformation and Electronic Structure of a Blue Copper Azurin in a Solid-State Junction.<br>Biomolecules, 2019, 9, 506.                                                                                                                | 1.8               | 16          |
| 16 | A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie -<br>International Edition, 2019, 58, 11852-11859.                                                                                                   | 7.2               | 26          |
| 17 | Doping hepta-alanine with tryptophan: A theoretical study of its effect on the electrical conductance of peptide-based single-molecule junctions. Journal of Chemical Physics, 2019, 150, 174705.                                                | 1.2               | 10          |
| 18 | Electron Transport Through Homopeptides: Are They Really Good Conductors?. ACS Omega, 2018, 3, 3778-3785.                                                                                                                                        | 1.6               | 26          |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A simple descriptor for energetics at fcc-bcc metal interfaces. Materials and Design, 2018, 142, 158-165.                                                                                                                                                            | 3.3  | 15        |
| 20 | The Role of Oligomeric Gold–Thiolate Units in Single-Molecule Junctions of Thiol-Anchored Molecules. Journal of Physical Chemistry C, 2018, 122, 3211-3218.                                                                                                          | 1.5  | 41        |
| 21 | Peltier cooling in molecular junctions. Nature Nanotechnology, 2018, 13, 122-127.                                                                                                                                                                                    | 15.6 | 120       |
| 22 | <i>Ab initio</i> electronic structure calculations of entire blue copper azurins. Physical Chemistry Chemical Physics, 2018, 20, 30392-30402.                                                                                                                        | 1.3  | 19        |
| 23 | Platinum atomic contacts: From tunneling to contact. Physical Review B, 2017, 95, .                                                                                                                                                                                  | 1.1  | 8         |
| 24 | Bioengineering a Single-Protein Junction. Journal of the American Chemical Society, 2017, 139, 15337-15346.                                                                                                                                                          | 6.6  | 84        |
| 25 | Resonant transport and electrostatic effects in single-molecule electrical junctions. Physical Review B, 2015, 91, .                                                                                                                                                 | 1.1  | 28        |
| 26 | Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F <sub>4</sub> TCNQ. Beilstein Journal of Organic Chemistry, 2015, 11, 1068-1078.                                                           | 1.3  | 29        |
| 27 | Toward Multiple Conductance Pathways with Heterocycle-Based Oligo(phenyleneethynylene)<br>Derivatives. Journal of the American Chemical Society, 2015, 137, 13818-13826.                                                                                             | 6.6  | 64        |
| 28 | Heat dissipation and its relation to thermopower in single-molecule junctions. New Journal of Physics, 2014, 16, 015004.                                                                                                                                             | 1.2  | 88        |
| 29 | A Molecular Platinum Cluster Junction: A Single-Molecule Switch. Journal of the American Chemical Society, 2013, 135, 2052-2055.                                                                                                                                     | 6.6  | 29        |
| 30 | Heat dissipation in atomic-scale junctions. Nature, 2013, 498, 209-212.                                                                                                                                                                                              | 13.7 | 219       |
| 31 | <i>Ab initio</i> study of the thermopower of biphenyl-based single-molecule junctions. Physical Review B, 2012, 86, .                                                                                                                                                | 1.1  | 43        |
| 32 | Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments. Nanoscale Research Letters, 2012, 7, 254.                                                                                                                                    | 3.1  | 4         |
| 33 | Theoretical study of the charge transport through C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>60</mml:mn></mml:msub></mml:math> -based single-molecule junctions. Physical Review B, 2012. 85 | 1.1  | 51        |
| 34 | Single-Molecule Junctions Based on Nitrile-Terminated Biphenyls: A Promising New Anchoring Group. Journal of the American Chemical Society, 2011, 133, 184-187.                                                                                                      | 6.6  | 212       |
| 35 | Carbon tips as electrodes for single-molecule junctions. Applied Physics Letters, 2011, 99, 123105.                                                                                                                                                                  | 1.5  | 8         |
| 36 | Electronic transport through single noble gas atoms. Physical Review B, 2011, 84, .                                                                                                                                                                                  | 1.1  | 2         |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATION |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| 37 | Revealing the Role of Anchoring Groups in the Electrical Conduction Through Singleâ€Molecule Junctions. Small, 2010, 6, 1529-1535.                                                                                                          | 5.2  | 200      |
| 38 | Comment on "Chemical versus van der Waals Interaction: The Role of the Heteroatom in the Flat Absorption of Aromatic MoleculesC6H6,C5NH5, andC4N2H4on the Cu(110) Surface― Physical Review Letters, 2010, 104, 099703; author reply 099704. | 2.9  | 7        |
| 39 | Adsorption of benzene, fluorobenzene and metaâ€diâ€fluorobenzene on Cu(110): A computational study.<br>Journal of Computational Chemistry, 2008, 29, 1589-1595.                                                                             | 1.5  | 17       |
| 40 | Dipole-directed assembly of lines of 1,5-dichloropentane on silicon substrates by displacement of surface charge. Nature Nanotechnology, 2008, 3, 222-228.                                                                                  | 15.6 | 57       |
| 41 | Self-assembly of semifluorinated n-alkanethiols on {111}-oriented Au investigated with scanning tunneling microscopy experiment and theory. Journal of Chemical Physics, 2007, 127, 024702.                                                 | 1.2  | 11       |
| 42 | Ab-initio calculations and STM observations on tetrapyridyl and Fe(II)-tetrapyridyl-porphyrin molecules on Ag(111). Surface Science, 2007, 601, 2409-2414.                                                                                  | 0.8  | 46       |
| 43 | Electron scattering in scanning probe microscopy experiments. Chemical Physics Letters, 2006, 420, 177-182.                                                                                                                                 | 1.2  | 23       |
| 44 | Poly(phenyleneethynylene) polymers bearing glucose substituents as promising active layers in enantioselective chemiresistors. Sensors and Actuators B: Chemical, 2004, 100, 17-21.                                                         | 4.0  | 29       |