
Chonggui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929480/publications.pdf Version: 2024-02-01

Сномесци Ц

#	Article	IF	CITATIONS
1	In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding. Materials Chemistry and Physics, 2020, 242, 122522.	4.0	73
2	Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys. Optics and Laser Technology, 2020, 123, 105926.	4.6	50
3	Laser remelting of plasma-sprayed conventional and nanostructured Al2O3–13wt.%TiO2 coatings on titanium alloy. Journal of Alloys and Compounds, 2010, 506, 356-363.	5.5	44
4	Effect of Si content on the microstructure and properties of Al–Si alloys fabricated using hot extrusion. Journal of Materials Research, 2017, 32, 2210-2217.	2.6	39
5	Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites. Metals, 2017, 7, 359.	2.3	39
6	Numerical Simulation of Thermal Evolution and Solidification Behavior of Laser Cladding AlSiTiNi Composite Coatings. Coatings, 2019, 9, 391.	2.6	22
7	Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC. International Journal of Advanced Manufacturing Technology, 2019, 103, 3235-3246.	3.0	21
8	Modeling of temperature distribution and clad geometry of the molten pool during laser cladding of TiAlSi alloys. Optics and Laser Technology, 2021, 142, 107277.	4.6	21
9	Effect of WC addition on microstructure and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying. Materials Chemistry and Physics, 2019, 234, 9-15.	4.0	20
10	Microstructure and tribological behavior of laser cladding TiAlSi composite coatings reinforced by alumina–titania ceramics on Ti–6Al–4V alloys. Materials Chemistry and Physics, 2020, 240, 122271.	4.0	18
11	Microstructure and properties of laser-cladded bimodal composite coatings derived by composition design. Journal of Alloys and Compounds, 2018, 745, 483-489.	5.5	16
12	Microstructural evolution and wear behaviors of NbC-reinforced Ti-based composite coating. International Journal of Advanced Manufacturing Technology, 2020, 107, 2397-2407.	3.0	15
13	Effect of Vibration Frequency on Microstructure and Properties of Laser-Welded Inconel 718 Nickel-Base Superalloy. Journal of Materials Engineering and Performance, 2021, 30, 2399-2407.	2.5	11
14	Effect of high-frequency micro-vibration on microstructure and properties of laser cladding aluminum coatings. International Journal of Advanced Manufacturing Technology, 2019, 103, 1633-1642.	3.0	8
15	The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 729-738.	2.5	8
16	Al2O3/TiO2-Ni-WC Composite Coatings Designed for Enhanced Wear Performance by Laser Cladding Under High-Frequency Micro-Vibration. Jom, 2020, 72, 4060-4068.	1.9	5
17	Microstructures and Wear Resistance of Diamond-Reinforced FeCoCrNiAl0.5Ti0.5Si0.2-Carbonized High-Entropy Alloy Coatings by Laser Cladding. Transactions of the Indian Institute of Metals, 2022, 75, 1967-1978.	1.5	5
18	Microstructure and tribological properties of laser cladded TiAlSi composite coatings reinforced by yttria-stabilized zirconia. Materials Research Express, 2019, 6, 116410.	1.6	4

#	Article	IF	CITATIONS
19	Research on Microstructure and Fatigue Properties of Vibration-Assisted 5052 Aluminum Alloy Laser Welded Joints. Journal of Materials Engineering and Performance, 2020, 29, 4197-4205.	2.5	3
20	A Study on the Microstructure and Fatigue Properties of Welding Joints in Vibrationâ€Assisted Laser Welding Process. Steel Research International, 2020, 91, 1900548.	1.8	2