Enamul Haque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929175/publications.pdf Version: 2024-02-01

ENAMUL HAOLE

#	Article	IF	CITATIONS
1	First-principles study of elastic, electronic, thermodynamic, and thermoelectric transport properties of TaCoSn. Results in Physics, 2018, 10, 458-465.	2.0	67
2	Origin of ultra-low lattice thermal conductivity in Cs2BiAgX6 (X=Cl, Br) and its impact on thermoelectric performance. Journal of Alloys and Compounds, 2018, 748, 63-72.	2.8	65
3	Structural, elastic, electronic, magnetic and thermoelectric properties of new quaternary Heusler compounds CoZrMn X (X =Al, Ga, Ge, In). Computational Condensed Matter, 2018, 15, 31-41.	0.9	49
4	Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study. Computational Condensed Matter, 2019, 19, e00374.	0.9	36
5	Electronic properties and low lattice thermal conductivity (<i>κ</i> _l) of mono-layer (ML) MoS ₂ : FP-LAPW incorporated with spin–orbit coupling (SOC). RSC Advances, 2020, 10, 18830-18840.	1.7	26
6	Structural, elastic, optoelectronic and transport calculations of Sr3SnO under pressure. Materials Science in Semiconductor Processing, 2018, 83, 192-200.	1.9	19
7	First-principles study of mechanical, thermodynamic, transport and superconducting properties of Sr3SnO. Journal of Alloys and Compounds, 2018, 730, 279-283.	2.8	18
8	Elastic, electronic, thermodynamic and transport properties of XOsSi (X=Nb, Ta) superconductors: First-principles calculations. Journal of Alloys and Compounds, 2018, 739, 737-745.	2.8	13
9	Elastic, electronic and thermoelectric properties of Sr3MN (MÂ= Sb, Bi) under pressure. Journal of Alloys and Compounds, 2019, 783, 593-600.	2.8	13
10	Elastic, magnetic, transport and electronic properties of noncentrosymmetric M2Mo3N (M = Fe, Co, Ni,) Tj	ETQq0 0 0 2.8) rgBT /Overlo
11	First-principles prediction of phonon-mediated superconductivity in XBC (X = Mg, Ca, Sr, Ba). Physical Chemistry Chemical Physics, 2019, 21, 8767-8773.	1.3	12
12	Outstanding Thermoelectric Performance of MCu3X4 (M = V, Nb, Ta; X = S, Se, Te) with Unaffected Band Degeneracy under Pressure. ACS Applied Energy Materials, 2021, 4, 1942-1953.	2.5	12
13	Role of Oxygen Vacancy Ordering and Channel Formation in Tuning Intercalation Pseudocapacitance in Mo Single-Ion-Implanted CeO _{2–<i>x</i>} Nanoflakes. ACS Applied Materials & Interfaces, 2021, 13, 59820-59833.	4.0	11
14	Enhanced thermoelectric performance in Ca-substituted Sr3SnO. Journal of Physics and Chemistry of Solids, 2018, 123, 318-326.	1.9	10
15	First-principles prediction of large thermoelectric efficiency in superionic Li ₂ SnX ₃ (X = S, Se). Physical Chemistry Chemical Physics, 2020, 22, 878-889.	1.3	9
16	Pressure- and temperature-dependent physical metallurgy in a face-centered cubic NiCoFeCrMn high entropy alloy and its subsystems. Journal of Alloys and Compounds, 2021, 873, 159843.	2.8	8
17	Electronic structure transition of cubic CsSnCl3 under pressure: effect of rPBE and PBEsol functionals and GW method. Helivon. 2021. 7. e07796.	1.4	7

18First-principles predictions of low lattice thermal conductivity and high thermoelectric performance
of AZnSb (A = Rb, Cs). RSC Advances, 2021, 11, 15486-15496.1.76

ENAMUL HAQUE

#	Article	IF	CITATIONS
19	Structural, thermodynamic, electronic and magnetic properties of Sr3Sn1â^'xYxO (Y = V, Fe) from first-principles study. Results in Physics, 2018, 11, 283-290.	2.0	5
20	DFT based study on structural stability and transport properties of Sr ₃ AsN: A potential thermoelectric material. Journal of Materials Research, 2019, 34, 2635-2642.	1.2	5
21	Improving the optical and thermoelectric properties of Cs2InAgCl6 with heavy substitutional doping: a DFT insight. RSC Advances, 2021, 11, 5521-5528.	1.7	5
22	First-principles prediction of structural stability and thermoelectric properties of SrGaSnH. RSC Advances, 2021, 11, 3304-3314.	1.7	4
23	Extraordinary thermoelectric performance of NaBaBi with degenerate and highly non-parabolic bands compared to LiBaSb and Bi ₂ Te ₃ . Sustainable Energy and Fuels, 2021, 5, 2441-2450.	2.5	3
24	Effect of Bi-substitution on structural stability and improved thermoelectric performance of p-type half-Heusler TaSbRu: A first-principles study. Computational Materials Science, 2021, 190, 110300.	1.4	3
25	Prediction of the fundamental properties of novel Be-B-Ta-based ternary compounds from first-principles calculations. Physical Review Materials, 2019, 3, .	0.9	3
26	Lattice dynamics, transport and superconducting properties of Ba-substituted Sr3SnO. Solid State Communications, 2018, 284-286, 14-19.	0.9	2
27	First-principles investigation of elastic, transport, electronic and superconducting properties of noncentrosymmetric Re6X (X=Zr, Hf). Computational Condensed Matter, 2019, 19, e00370.	0.9	0
28	The role of strontium deficiency and pressure on electron-phonon superconductivity in Sr3SnO. Physica C: Superconductivity and Its Applications, 2019, 559, 42-49.	0.6	0
29	Neutral particle trajectory in the Kerr field. Journal of Astrophysics and Astronomy, 2019, 40, 1.	0.4	0