
Oliver Eulenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4929007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Shape of Supertrees to Come: Tree Shape Related Properties of Fourteen Supertree Methods. Systematic Biology, 2005, 54, 419-431.	5.6	88
2	Robinson-Foulds Supertrees. Algorithms for Molecular Biology, 2010, 5, 18.	1.2	88
3	iGTP: A software package for large-scale gene tree parsimony analysis. BMC Bioinformatics, 2010, 11, 574.	2.6	79
4	Performance of Flip Supertree Construction with a Heuristic Algorithm. Systematic Biology, 2004, 53, 299-308.	5.6	57
5	Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models. BMC Bioinformatics, 2010, 11, S42.	2.6	53
6	Unrooted Tree Reconciliation: A Unified Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 522-536.	3.0	39
7	Improved Heuristics for Minimum-Flip Supertree Construction. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	1.2	32
8	EXACT SOLUTIONS FOR SPECIES TREE INFERENCE FROM DISCORDANT GENE TREES. Journal of Bioinformatics and Computational Biology, 2013, 11, 1342005.	0.8	21
9	Quartet-based inference is statistically consistent under the unified duplication-loss-coalescence model. Bioinformatics, 2021, 37, 4064-4074.	4.1	21
10	Triplet supertree heuristics for the tree of life. BMC Bioinformatics, 2009, 10, S8.	2.6	20
11	An ILP solution for the gene duplication problem. BMC Bioinformatics, 2011, 12, S14.	2.6	19
12	Consensus properties for the deep coalescence problem and their application for scalable tree search. BMC Bioinformatics, 2012, 13, S12.	2.6	17
13	Maximizing Deep Coalescence Cost. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 231-242.	3.0	12
14	Groves of Phylogenetic Trees. Annals of Combinatorics, 2009, 13, 139-167.	0.6	8
15	Tracing the ancestry of operons in bacteria. Bioinformatics, 2019, 35, 2998-3004.	4.1	7
16	Robinson-Foulds Reticulation Networks. , 2019, , .		6
17	Gene Tree Diameter for Deep Coalescence. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 155-165.	3.0	5
18	Consensus properties and their large-scale applications for the gene duplication problem. Journal of Bioinformatics and Computational Biology, 2016, 14, 1642005.	0.8	5

OLIVER EULENSTEIN

#	Article	IF	CITATIONS
19	Path-Difference Median Trees. Lecture Notes in Computer Science, 2016, , 211-223.	1.3	5
20	Duplication Cost Diameters. Lecture Notes in Computer Science, 2014, , 212-223.	1.3	5
21	RF-Net 2: fast inference of virus reassortment and hybridization networks. Bioinformatics, 2022, 38, 2144-2152.	4.1	5
22	Synthesizing large-scale species trees using the strict consensus approach. Journal of Bioinformatics and Computational Biology, 2017, 15, 1740002.	0.8	3
23	Consensus of all Solutions for Intractable Phylogenetic Tree Inference. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 18, 1-1.	3.0	3
24	Manhattan Path-Difference Median Trees. , 2016, , .		2
25	Unconstrained Diameters for Deep Coalescence. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1002-1012.	3.0	2
26	Bijective Diameters of Gene Tree Parsimony Costs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1-1.	3.0	2
27	Taming the Duplication-Loss-Coalescence Model with Integer Linear Programming. Journal of Computational Biology, 2021, 28, 758-773.	1.6	2
28	Efficient Local Search for Euclidean Path-Difference Median Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1374-1385.	3.0	1
29	Computing Manhattan Path-Difference Median Trees: A Practical Local Search Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1063-1076.	3.0	1
30	Invited: Reconciled gene trees and their applications. , 2011, , .		0
31	Robinson-Foulds Median Trees. , 2016, , .		0
32	The Unconstrained Diameters of the Duplication-Loss Cost and the Loss Cost. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 18, 1-1.	3.0	0
33	Cophenetic Median Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1459-1470.	3.0	0
34	Exact median-tree inference for unrooted reconciliation costs. BMC Evolutionary Biology, 2020, 20, 136.	3.2	0
35	Phylogenetic Tree Reconciliation: Mean Values for Fixed Gene Trees. Lecture Notes in Computer Science, 2017, , 234-245.	1.3	0
36	Finding orthologous gene blocks in bacteria: theÂcomputational hardness of the problem and novelÂmethods to address it. Bioinformatics, 2020, 36, i668-i674.	4.1	0