Denis J Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4928949/publications.pdf Version: 2024-02-01

DENIS | MIIDDHV

#	Article	IF	CITATIONS
1	The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in Lipid Research, 2001, 40, 325-438.	11.6	839
2	Mechanisms of lipid-body formation. Trends in Biochemical Sciences, 1999, 24, 109-115.	7.5	529
3	Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction, 1998, 11, 65-80.	2.2	384
4	The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma, 2012, 249, 541-585.	2.1	325
5	Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Progress in Lipid Research, 1993, 32, 247-280.	11.6	241
6	The molecular organisation of the photosynthetic membranes of higher plants. BBA - Biomembranes, 1986, 864, 33-94.	8.0	190
7	Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Molecular Biology, 2000, 44, 463-476.	3.9	161
8	The Domains Required to Direct Core Proteins of Hepatitis C Virus and GB Virus-B to Lipid Droplets Share Common Features with Plant Oleosin Proteins. Journal of Biological Chemistry, 2002, 277, 4261-4270.	3.4	148
9	Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta, 1999, 208, 588-598.	3.2	124
10	Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant Journal, 1997, 11, 549-562.	5.7	117
11	Arabidopsis Peptide Methionine Sulfoxide Reductase2 Prevents Cellular Oxidative Damage in Long Nights[W]. Plant Cell, 2004, 16, 908-919.	6.6	117
12	Engineering oil production in rapeseed and other oil crops. Trends in Biotechnology, 1996, 14, 206-213.	9.3	115
13	Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana). Plant Science, 1993, 93, 203-210.	3.6	108
14	The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Letters, 1982, 150, 19-26.	2.8	107
15	Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds. Planta, 1997, 204, 109-119.	3.2	104
16	Biosynthesis of Seed Storage Products during Embryogenesis in Rapeseed, Brassica napus. Journal of Plant Physiology, 1989, 135, 63-69.	3.5	101
17	A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue inArabidopsis thalianacan protect the chaperoneâ€like activity of a chloroplastâ€localized small heat shock protein. Plant Journal, 2002, 29, 545-553.	5.7	99
18	Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant Journal, 1997, 11, 783-796.	5.7	95

#	Article	IF	CITATIONS
19	Differential Regulation of Plastidial and Cytosolic Isoforms of Peptide Methionine Sulfoxide Reductase in Arabidopsis. Plant Physiology, 2000, 123, 255-264.	4.8	87
20	Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiology and Biochemistry, 2009, 47, 796-806.	5.8	87
21	The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma, 2006, 228, 31-39.	2.1	79
22	Improving containment strategies in biopharming. Plant Biotechnology Journal, 2007, 5, 555-569.	8.3	78
23	Role of lipid bodies and lipid-body proteins in seeds and other tissues. Journal of Plant Physiology, 2001, 158, 471-478.	3.5	77
24	Production of novel oils in plants. Current Opinion in Biotechnology, 1999, 10, 175-180.	6.6	73
25	Characterization of anther-expressed genes encoding a major class of extracellular oleosin-like proteins in the pollen coat of Brassicaceae+. Plant Journal, 1996, 9, 625-637.	5.7	72
26	Lateral heterogeneity in the distribution of thylakoid membrane lipid and protein components and its implications for the molecular organisation of photosynthetic membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 725, 104-112.	1.0	71
27	A class of amphipathic proteins associated with lipid storage bodies in plants. Possible similarities with animal serum apolipoproteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1088, 86-94.	2.4	70
28	The origin of chloroplastic acetyl coenzyme A. Archives of Biochemistry and Biophysics, 1981, 212, 730-739.	3.0	66
29	Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience, 2021, 2, 39.	2.4	66
30	Purification and Structural Characterization of the Central Hydrophobic Domain of Oleosin. Journal of Biological Chemistry, 2002, 277, 37888-37895.	3.4	63
31	Nucleotide sequence and temporal regulation of a seed-specificBrassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Molecular Biology, 1992, 20, 151-155.	3.9	62
32	Targeting of oleosins to the oil bodies of oilseed rape (Brassica napus L.). Planta, 1993, 189, 24-9.	3.2	60
33	Differential, temporal and spatial expression of genes involved in storage oil and oleosin accumulation in developing rapeseed embryos: implications for the role of oleosins and the mechanisms of oil-body formation. Plant Molecular Biology, 1993, 23, 1015-1027.	3.9	60
34	Seed oil-bodies: Isolation, composition and role of oil-body apolipoproteins. Phytochemistry, 1989, 28, 2063-2069.	2.9	55
35	Spin-label ESR studies of lipid-protein interactions in thylakoid membranes. Biochemistry, 1989, 28, 7446-7452.	2.5	54
36	Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant Physiology and Biochemistry, 2002, 40, 255-263.	5.8	54

#	Article	IF	CITATIONS
37	Light-dependent Induction of Polyunsaturated Fatty Acid Biosynthesis in Greening Cucumber Cotyledons. Plant Physiology, 1979, 63, 328-335.	4.8	53
38	A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Molecular Biology, 1994, 24, 327-340.	3.9	50
39	Cloning and characterisation of an oleosin gene from Brassica napus. Plant Molecular Biology, 1992, 19, 443-453.	3.9	46
40	Novel organelles and targeting mechanisms in the anther tapetum. Trends in Plant Science, 1998, 3, 250-252.	8.8	46
41	Future prospects for oil palm in the 21st century: Biological and related challenges. European Journal of Lipid Science and Technology, 2007, 109, 296-306.	1.5	46
42	Role of the Proline Knot Motif in Oleosin Endoplasmic Reticulum Topology and Oil Body Targeting. Plant Cell, 1997, 9, 1481.	6.6	44
43	Identification of a peptide methionine sulphoxide reductase gene in an oleosin promoter from Brassica napus. Plant Journal, 1996, 10, 235-242.	5.7	41
44	Object-Based Image Analysis for Detection of Japanese Knotweed s.l. taxa (Polygonaceae) in Wales (UK). Remote Sensing, 2011, 3, 319-342.	4.0	41
45	Lipid biosynthesis from [14 C] bicarbonate, [2-14 C] pyruvate and [1-14 C] acetate during photosynthesis by isolated spinach chloroplasts. FEBS Letters, 1977, 77, 164-168.	2.8	40
46	Developmental regulation and spatial expression of a plastidial fatty acid desaturase from Olea europaea. Plant Physiology and Biochemistry, 1999, 37, 109-119.	5.8	40
47	The pathway of [14C]bicarbonate incorporation into lipids in isolated photosynthesising spinach chloroplasts. FEBS Letters, 1978, 88, 192-196.	2.8	39
48	Biogenesis, function and biotechnology of plant storage lipids. Progress in Lipid Research, 1994, 33, 71-85.	11.6	39
49	Purification and immunogold localisation of the major oil-body membrane protein of oilseed rape. Plant Science, 1989, 60, 47-54.	3.6	38
50	Detection of genetically modified soya in a range of organic and health food products. British Food Journal, 2004, 106, 166-180.	2.9	38
51	Oil palm: future prospects for yield and quality improvements. Lipid Technology, 2009, 21, 257-260.	0.3	37
52	In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Science, 2018, 275, 84-96.	3.6	37
53	Functional association of a monoacylglycerophosphocholine acyltransferase and the oleoylglycerophosphocholine desaturase in microsomes from developing leaves. FEBS Journal, 1984, 139, 373-379.	0.2	36
54	Conserved methionines in chloroplasts. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1703, 191-202.	2.3	36

4

#	Article	IF	CITATIONS
55	The properties of transketolase from photosynthetic tissue. Planta, 1982, 155, 316-320.	3.2	35
56	The Brassica napus calcium-binding protein, caleosin, has distinct endoplasmic reticulum- and lipid body-associated isoforms. Plant Physiology and Biochemistry, 2001, 39, 615-622.	5.8	35
5 7	Differential responses of a range of photosynthetic tissues to a substituted pyridazinone, sandoz 9785. Specific effects on fatty acid desaturation. Phytochemistry, 1985, 24, 1923-1929.	2.9	33
58	Characterization of a new class of oleosins suggests a male gametophyte specific lipid storage pathway. Plant Journal, 1993, 3, 629-636.	5.7	33
59	Sub-cellular localization of fatty acid elongase in developing seeds of Lunaria annua and Brassica napus. Phytochemistry, 1993, 32, 255-258.	2.9	31
60	Authentication of cinnamon spice samples using FT-IR spectroscopy and chemometric classification. LWT - Food Science and Technology, 2022, 154, 112760.	5.2	31
61	cDNA sequence of a sunflower oleosin and transcript tissue specificity. Plant Molecular Biology, 1992, 19, 873-876.	3.9	30
62	Acetyl coenzyme A biosynthesis in the chloroplast. Planta, 1982, 156, 84-88.	3.2	29
63	Tumor Suppressors Status in Cancer Cell Line Encyclopedia. Molecular Oncology, 2013, 7, 791-798.	4.6	28
64	Biosynthesis of Triacylglycerols Containing Very Long Chain Monounsaturated Acyl Moieties in Developing Seeds. Plant Physiology, 1990, 94, 492-498.	4.8	27
65	Biosynthesis and localisation of storage proteins, oleosins and lipids during seed development in Coriandrum sativum and other Umbelliferae. Plant Science, 1992, 86, 59-70.	3.6	27
66	Modifying oilseed crops for non-edible products. Trends in Biotechnology, 1992, 10, 84-87.	9.3	27
67	Storage lipid formation in seeds. Seed Science Research, 1993, 3, 79-95.	1.7	26
68	The Peroxygenase Activity of the Aspergillus flavus Caleosin, AfPXG, Modulates the Biosynthesis of Aflatoxins and Their Trafficking and Extracellular Secretion via Lipid Droplets. Frontiers in Microbiology, 2018, 9, 158.	3.5	26
69	In Vivo Pathway of Oleate and Linoleate Desaturation in Developing Cotyledons of Cucumis sativus L. Seedlings. Plant Physiology, 1980, 66, 666-671.	4.8	25
70	Photosynthesis of Lipids from 14CO2 in Spinacia oleracea. Plant Physiology, 1981, 68, 762-765.	4.8	25
71	Evidence-based gene models for structural and functional annotations of the oil palm genome. Biology Direct, 2017, 12, 21.	4.6	24
72	ldentification of a dioxin-responsive oxylipin signature in roots of date palm: involvement of a 9-hydroperoxide fatty acid reductase, caleosin/peroxygenase PdPXG2. Scientific Reports, 2018, 8, 13181.	3.3	24

#	Article	IF	CITATIONS
73	The use of conventional and molecular genetics to produce new diversity in seed oil composition for the use of plant breeders-progress, problems and future prospects. Euphytica, 1995, 85, 433-440.	1.2	23
74	Evolutionary and genomic analysis of the caleosin/peroxygenase (CLO/PXG) gene/protein families in the Viridiplantae. PLoS ONE, 2018, 13, e0196669.	2.5	23
75	Regulation of Photosynthetic Carbon Metabolism. The effect of Inorganic Phosphate on Stromal Sedoheptulsoe-1,7-Bisphosphatase. FEBS Journal, 1983, 132, 121-123.	0.2	21
76	Acyltransferases in subcellular fractions of developing seeds of rape (Brassica napus L.). Lipids, 1987, 22, 293-298.	1.7	21
77	Sequence of an oleocin cDNA from Brassica napus. Plant Molecular Biology, 1992, 19, 1079-1083.	3.9	21
78	Differential accumulation of storage products in developing seeds and somatic cell cultures of Daucus carota L. Plant Science, 1993, 88, 1-11.	3.6	21
79	Temporal and spatial gene expression of cytochrome B5 during flower and fruit development in olives. Plant Molecular Biology, 1999, 40, 79-90.	3.9	21
80	Biochemical, Transcriptional, and Bioinformatic Analysis of Lipid Droplets from Seeds of Date Palm (Phoenix dactylifera L.) and Their Use as Potent Sequestration Agents against the Toxic Pollutant, 2,3,7,8-Tetrachlorinated Dibenzo-p-Dioxin. Frontiers in Plant Science, 2016, 7, 836.	3.6	21
81	Inhibition of Neutral Lipase from Castor Bean Lipid Bodies by Coenzyme A (CoA) and Oleoyl-CoA. Plant Physiology, 1989, 89, 1006-1010.	4.8	20
82	Manipulation of seed oil content to produce industrial crops. Industrial Crops and Products, 1994, 3, 17-27.	5.2	20
83	Temporal and transient expression of olive enoyl-ACP reductase gene during flower and fruit development. Plant Physiology and Biochemistry, 2005, 43, 37-44.	5.8	20
84	Specific Caleosin/Peroxygenase and Lipoxygenase Activities Are Tissue-Differentially Expressed in Date Palm (Phoenix dactylifera L.) Seedlings and Are Further Induced Following Exposure to the Toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin. Frontiers in Plant Science, 2016, 7, 2025.	3.6	20
85	Rationalizing governance of genetically modified products in developing countries. Nature Biotechnology, 2018, 36, 137-139.	17.5	20
86	Polyunsaturated Fatty Acid Biosynthesis in Cotyledons from Germinating and Developing <i>Cucumis sativus L.</i> Seedlings. Plant Physiology, 1980, 66, 660-665.	4.8	19
87	Biosynthesis of very long chain monounsaturated fatty acids by subcellular fractions of developing seeds. FEBS Letters, 1988, 230, 101-104.	2.8	19
88	Solubilisation of oleoyl-CoA thioesterase, oleoyl-CoA: phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase. FEBS Letters, 1983, 162, 442-446.	2.8	18
89	Reconstitution of light-harvesting chlorophyll-protein complexes with Photosystem II complexes in soybean phosphatidylcholine liposomes. FEBS Letters, 1984, 165, 151-155.	2.8	18
90	<i>cisExpress</i> : motif detection in DNA sequences. Bioinformatics, 2013, 29, 2203-2205.	4.1	18

#	Article	IF	CITATIONS
91	Molecular breeding strategies for the modification of lipid composition. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 89-99.	2.1	17
92	NPEST: a nonparametric method and a database for transcription start site prediction. Quantitative Biology, 2013, 1, 261-271.	0.5	17
93	Using modern plant breeding to improve the nutritional and technological qualities of oil crops. OCL - Oilseeds and Fats, Crops and Lipids, 2014, 21, D607.	1.4	17
94	Use of headspace–gas chromatography–ion mobility spectrometry to detect volatile fingerprintsÂof palm fibre oil and sludge palm oil in samples of crude palm oil. BMC Research Notes, 2019, 12, 229.	1.4	17
95	Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1. Journal of Experimental Botany, 2018, 69, 1781-1794.	4.8	16
96	Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm. PLoS ONE, 2018, 13, e0194792.	2.5	16
97	Aldolase from wheat leaves-its properties and subcellular distribution. FEBS Letters, 1981, 134, 163-166.	2.8	15
98	A highly active soluble diacylglycerol synthesizing system from developing rapeseed,Brassica napus L Lipids, 1988, 23, 157-163.	1.7	15
99	Immunocytochemical and biochemical studies of the mobilisation of storage oil-bodies and proteins in germinating cotyledons of oilseed rape,Brassica napus. Journal of the Science of Food and Agriculture, 1989, 48, 209-223.	3.5	15
100	Spin label saturation transfer ESR studies of protein-lipid interactions in Photosystem II-enriched membranes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 187-192.	2.6	15
101	Biotechnology and the improvement of oil crops – genes, dreams and realities. Phytochemistry Reviews, 2002, 1, 67-77.	6.5	15
102	Elongation Pathway for α-Linolenic Acid Synthesis in Spinach Leaves. Plant Physiology, 1979, 64, 428-430.	4.8	14
103	Immunological investigation of lipases in germinating oilseed rape,Brassica napus. Journal of the Science of Food and Agriculture, 1989, 47, 21-31.	3.5	14
104	Characterization of Oil Palm Acyl-CoA-Binding Proteins and Correlation of Their Gene Expression with Oil Synthesis. Plant and Cell Physiology, 2020, 61, 735-747.	3.1	14
105	Oleate metabolism in microsomes from developing leaves ofPisum sativum L Planta, 1984, 161, 249-254.	3.2	13
106	Elongases Synthesizing Very Long Chain Monounsaturated Fatty Acids in Developing Oilseeds and Their Solubilization. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 629-634.	1.4	13
107	Effect of a substituted pyridazinone, compound BASF 13–338 on membrane lipid synthesis in photosynthetic tissues. Biochemical Society Transactions, 1980, 8, 119-120.	3.4	12
108	The requirements for a steady state in the C3 reductive pentose phosphate pathway of photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 807, 263-271.	1.0	12

#	Article	IF	CITATIONS
109	Manipulation of Plant Oil Composition for the Production of Valuable Chemicals. Advances in Experimental Medicine and Biology, 1999, 464, 21-35.	1.6	12
110	Is rapeseed really an allergenic plant? Popular myths versus scientific realities. Trends in Immunology, 1999, 20, 511-514.	7.5	11
111	Evolutionary, structural and functional analysis of the caleosin/peroxygenase gene family in the Fungi. BMC Genomics, 2018, 19, 976.	2.8	11
112	Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. Bioresources and Bioprocessing, 2020, 7, .	4.2	11
113	Synthesis and targeting of Brassica napus oleosin in transgenic tobacco. Plant Science, 1994, 104, 39-47.	3.6	10
114	Manipulation of lipid metabolism in transgenic plants: biotechnological goals and biochemical realities. Biochemical Society Transactions, 1994, 22, 926-931.	3.4	10
115	Promoter sequences from two different Brassica napus tapetal oleosin-like genes direct tapetal expression of beta-glucuronidase in transgenic Brassica plants. Plant Molecular Biology, 1997, 34, 549-555.	3.9	10
116	Identification and characterisation of genes and enzymes for the genetic engineering of oilseed crops for production of oils for the oleochemical industry: a review. Industrial Crops and Products, 1992, 1, 251-259.	5.2	9
117	Reconstitution of energy transfer and electron transfer between solubilised pigment-protein complexes from thylakoid membranes. The role of acyl lipids. Photosynthesis Research, 1986, 8, 219-233.	2.9	8
118	An immunologically related family of apolipoproteins associated with triacylglycerol storage in the Cruciferae. Archives of Biochemistry and Biophysics, 1989, 273, 516-526.	3.0	8
119	A new class of highly abundant apolipoproteins involved in lipid storage in oilseeds. Biochemical Society Transactions, 1989, 17, 682-683.	3.4	8
120	Lipid-protein interactions in stacked and destacked thylakoid membranes and the influence of phosphorylation and illumination. Spin label ESR studies. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1024, 278-284.	2.6	8
121	Le colza carbure aux transgènes. Biofutur, 1999, 1999, 22-23.	0.0	8
122	Monitoring the traceability, safety and authenticity of imported palm oils in Europe. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, A603.	1.4	8
123	Involvement of hepatic lipid droplets and their associated proteins in the detoxification of aflatoxin B1 in aflatoxin-resistance BALB/C mouse. Toxicology Reports, 2020, 7, 795-804.	3.3	8
124	The use of conventional and molecular genetics to produce new diversity in seed oil composition for the use of plant breeders — progress, problems and future prospects. Developments in Plant Breeding, 1995, , 433-440.	0.2	7
125	Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. Plant Cell Reports, 2022, 41, 853-871.	5.6	7
126	Solubilization, purification and kinetic properties of three membrane-bound long-chain acyl-coenzyme-A thioesterases from microsomes of photosynthetic tissue. FEBS Journal, 1984, 142, 43-48.	0.2	6

Denis J Murphy

#	Article	IF	CITATIONS
127	Oil Crops as Potential Sources of Biofuels. , 2012, , 269-284.		6
128	ISCB-Student Council Narratives: Strategical development of the ISCB-Regional Student Groups in 2016. F1000Research, 2016, 5, 2882.	1.6	6
129	Low-resolution epitope characterisation in a family of seed apolipoproteins using polyclonal antibodies. Lipids and Lipid Metabolism, 1989, 1005, 97-102.	2.6	5
130	Are the promoter regions of seed storage protein genes suitable for the expression of genes involved in storage lipid synthesis?. Biochemical Society Transactions, 1989, 17, 685-686.	3.4	4
131	Functional involvement of caleosin/peroxygenase PdPXG4 in the accumulation of date palm leaf lipid droplets after exposure to dioxins. Environmental Pollution, 2021, 281, 116966.	7.5	4
132	BIOTECHNOLOGY: ITS IMPACT AND FUTURE PROSPECTS. Series on Photoconversion of Solar Energy, 2004, , 649-740.	0.2	4
133	Characterization of a new class of oleosins suggests a male gametophyte-specific lipid storage pathway. Plant Journal, 1993, 3, 629-636.	5.7	4
134	Are Oleosins Only Associated with Oil Bodies from Desiccation Tolerant Plant Tissues?. , 1995, , 558-560.		3
135	Partial purification and properties of a microsomal lysophosphatidic acid acyltransferase from oilseed rape. Biochemical Society Transactions, 1989, 17, 684-685.	3.4	2
136	The biotechnological utilisation of oilseeds. Acta Botanica Gallica, 1993, 140, 767-777.	0.9	2
137	Reply to Jones et al Trends in Immunology, 2000, 21, 155-156.	7.5	2
138	Shewry PR, Casey R, eds. 1999. Seed proteins. 883pp. Dordrecht: Kluwer. £315 (hardback) Annals of Botany, 2000, 86, 434-435.	2.9	2
139	Evaluating University Masterclasses and School Visits as mechanisms for enhancing teaching and learning experiences for undergraduates and school pupils. A pilot study involving biotechnology students. Bioscience Education, 2003, 2, 1-11.	0.4	2
140	Inhibition of fatty acid biosynthesis by metronidazole. Biochemical Society Transactions, 1980, 8, 535-536.	3.4	1
141	[65] Polyunsaturation system from higher plants. Methods in Enzymology, 1981, 72, 768-773.	1.0	1
142	Lipid-protein interactions in photosynthetic membranes. Biochemical Society Transactions, 1986, 14, 785-786.	3.4	1
143	Improving Plant Oils for Edible and Industrial Use. Nature Biotechnology, 1999, 17, 40-40.	17.5	1
144	1 out of 27—European politicians score poorly in agbiotech. Nature Biotechnology, 2010, 28, 551-552.	17.5	1

#	Article	IF	CITATIONS
145	New Sources of Fats and Oils. Chemistry and Physics of Lipids, 1983, 32, 175-176.	3.2	0
146	Plight of British postdocs. Nature, 1987, 325, 478-478.	27.8	0
147	Recent Scientific Developments in Genetic Technologies: Implications for Future Regulation of GMOs in Developing Countries. , 0, , 13-25.		0
148	Overview of Applications of Plant Biotechnology. , 0, , .		0
149	The Role of Acyl Lipids in the Function and Molecular Organisation of Photosynthetic Membranes. , 1984, , 111-114.		0
150	Mechanisms of Lipid-protein Binding in Photosynthetic Membranes. , 1987, , 189-191.		0
151	The Role of Lipid-Protein Interactions in the Structure and Function of Photosynthetic Membranes. , 1989, , 399-409.		0