Ahmad Hassan Siddique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4928930/publications.pdf

Version: 2024-02-01

932766 940134 16 417 10 16 g-index citations h-index papers 16 16 16 554 docs citations times ranked citing authors all docs

Article	IF	CITATIONS
Graphene Modified Polyanilineâ€Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem, 2021, 14, 938-945.	3.6	33
Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. Journal of Materials Science, 2020, 55, 309-318.	1.7	15
All graphene electrode for highâ€performance asymmetric supercapacitor. International Journal of Energy Research, 2020, 44, 1244-1255.	2.2	19
Advances in graphene-based supercapacitor electrodes. Energy Reports, 2020, 6, 2768-2784.	2.5	100
A hybrid composite of <scp>rGO</scp> / <scp> TiO ₂ </scp> as a double layer electrode with improved capacitance performance. International Journal of Energy Research, 2020, 44, 12197-12203.	2.2	8
A high-performance graphene based asymmetric supercapacitor. International Journal of Modern Physics B, 2020, 34, 2040007.	1.0	4
Nb-Doped MXene With Enhanced Energy Storage Capacity and Stability. Frontiers in Chemistry, 2020, 8, 168.	1.8	57
Assembly of hybrid electrode rGO–CNC–MnO2 for a high performance supercapacitor. Results in Materials, 2019, 1, 100007.	0.9	5
Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and longâ€ife anode material for Liâ€ion batteries. International Journal of Energy Research, 2019, 43, 4995-5003.	2.2	40
Meta-substituted bipolar imidazole based emitter for efficient non-doped deep blue organic light emitting devices with a high electroluminescence. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 72-78.	2.0	6
Self-assembly of \hat{I}^2 -FeOOH/rGO/CNT for a high-performance supercapacitor. Materials Letters, 2018, 220, 140-143.	1.3	25
Lecithin-coated gold nanoflowers (GNFs) for CT scan imaging applications and biochemical parameters; <i>in vitro</i> and <i>in vivo</i> studies. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 314-323.	1.9	2
Triphenylvinyl anthracene based emitter for non-doped blue light emitting devices with unusual emission behavior. Optical Materials, 2018, 79, 8-11.	1.7	3
Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Advances, 2017, 7, 18926-18936.	1.7	29
<i>In situ</i> preparation of Fe ₃ O ₄ in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries. Nanotechnology, 2017, 28, 465401.	1.3	10
Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. Reactive and Functional Polymers, 2017, 110, 21-29.	2.0	61
	Graphene Modified PolyanilineaEHydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem, 2021, 14, 938-945. Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. Journal of Materials Science, 2020, 55, 309-318. All graphene electrode for high&Sperformance asymmetric supercapacitor. International Journal of Energy Research, 2020, 44, 1244-1255. Advances in graphene-based supercapacitor electrodes. Energy Reports, 2020, 6, 2768-2784. Ahybrid composite of <a a="" href="scsp-riGO/scp> / scp> TiO <a href=" subb-2<="">/scp> as a double layer electrode with improved capacitance performance. International Journal of Energy Research, 2020, 44, 1219-71203. A high-performance graphene based asymmetric supercapacitor. International Journal of Modern Physics B, 2020, 34, 2040007. Nb-Doped MXene With Enhanced Energy Storage Capacity and Stability. Frontiers in Chemistry, 2020, 8, 168. Assembly of hybrid electrode cO3&CNC3&CMAO2 for a high performance supercapacitor. Results in Materials, 2019, 1, 100007. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long&Gre anode material for Lia&on batteries. International Journal of Energy Research, 2019, 43, 4995-5003. Meta-substituted bipolar imidazole based emitter for efficient non-doped deep blue organic light emitting devices with a high electroluminescence, Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 72-78. Self-assembly of 1-FeOOH/cGO/CNT for a high-performance supercapacitor. Materials Letters, 2018, 220, 140-143. Lecithin-coated gold nanoflowers (GNFs) for CT scan imaging applications and biochemical parameters; c) in vitros(h) and (3) in vivos(h) studies. Artificial Cells, Nanomedicine and Biochemical parameters; 2019 in vitros(h) and (3) in vivos(h) studies. Artificial Cells, Nanomedicine and Biochemical parameters; 2019, 74, 144-143. In situs(h) preparation of Fecsub 3 s/sub O sub 4 sub 4/sub in a carbon	Craphone Modified Polyandline&Phydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSus Chem, 2021, 14, 938-945. Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. Journal of Materials Science, 2020, 55, 309-318. All graphene electrode for high&Eperformance asymmetric supercapacitor. International Journal of Energy Research, 2020, 44, 1244-1255. Advances in graphene-based supercapacitor electrodes. Energy Reports, 2020, 6, 2768-2784. 2.5 Ahybrid composite of scsp-> 1"iO