
Jaegeon Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4928659/publications.pdf Version: 2024-02-01

INFCEON RVIL

#	Article	IF	CITATIONS
1	Surficial amide-enabled integrated organic anode–binder electrode for electrochemical reversibility and fast redox kinetics in lithium–ion batteries. Applied Surface Science, 2022, 601, 154220.	6.1	5
2	Vinyl-Integrated In Situ Cross-Linked Composite Gel Electrolytes for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 2922-2931.	5.1	12
3	Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. Energy Storage Materials, 2021, 36, 139-146.	18.0	20
4	Nanoscale anodes for rechargeable batteries: Fundamentals and design principles. , 2021, , 91-157.		2
5	An Electrochemically Activated Nanofilm for Sustainable Mg Anode with Fast Charge Transfer Kinetics. Journal of the Electrochemical Society, 2021, 168, 120519.	2.9	2
6	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	14.9	41
7	Roomâ€Temperature Crosslinkable Natural Polymer Binder for Highâ€Rate and Stable Silicon Anodes. Advanced Functional Materials, 2020, 30, 1908433.	14.9	95
8	Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. Energy Storage Materials, 2020, 33, 164-172.	18.0	17
9	Rational Structure Design of Fast-Charging NiSb Bimetal Nanosheet Anode for Lithium Ion Batteries. Energy & Fuels, 2020, 34, 10211-10217.	5.1	8
10	Dual Buffering Inverse Design of Threeâ€Dimensional Grapheneâ€Supported Snâ€TiO 2 Anodes for Durable Lithiumâ€Ion Batteries. Small, 2020, 16, 2004861.	10.0	13
11	Salt-mediated extraction of nanoscale Si building blocks: composite anode for Li-ion full battery with high energy density. Materials Advances, 2020, 1, 2797-2803.	5.4	1
12	Lithium Accommodation in a Redoxâ€Active Covalent Triazine Framework for High Areal Capacity and Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2003761.	14.9	86
13	Revisiting Classical Rocking Chair Lithium-Ion Battery. Macromolecular Research, 2020, 28, 1175-1191.	2.4	14
14	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 20325-20334.	10.3	35
15	Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. ACS Nano, 2019, 13, 2307-2315.	14.6	115
16	Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage. Nature Communications, 2019, 10, 2351.	12.8	57
17	Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution. Nature Communications, 2019, 10, 2364.	12.8	44
18	Three-Dimensional Monolithic Organic Battery Electrodes. ACS Nano, 2019, 13, 14357-14367.	14.6	22

Jaegeon Ryu

#	Article	IF	CITATIONS
19	Toward a Metallic Silicon Anode for Practical Lithium-Ion Battery Applications. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Directed Self-Assembly of Asymmetric Block Copolymers in Thin Films Driven by Uniaxially Aligned Topographic Patterns. ACS Nano, 2018, 12, 1642-1649.	14.6	15
21	Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. ACS Nano, 2018, 12, 1739-1746.	14.6	111
22	Fundamental Understanding of Nanostructured Si Electrodes: Preparation and Characterization. ChemNanoMat, 2018, 4, 319-337.	2.8	19
23	Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance. Journal of Power Sources, 2018, 374, 217-224.	7.8	33
24	Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nature Communications, 2018, 9, 2924.	12.8	94
25	Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts. Communications Chemistry, 2018, 1, .	4.5	31
26	Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage. Journal of Materials Chemistry A, 2018, 6, 15961-15967.	10.3	17
27	Cost-effective approach for structural evolution of Si-based multicomponent for Li-ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 2095-2101.	10.3	20
28	Sliding chains keep particles together. Science, 2017, 357, 250-251.	12.6	11
29	Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Research, 2017, 10, 3970-4002.	10.4	102
30	Hybridizing germanium anodes with polysaccharide-derived nitrogen-doped carbon for high volumetric capacity of Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15828-15837.	10.3	23
31	Revisiting Surface Modification of Graphite: Dualâ€Layer Coating for Highâ€Performance Lithium Battery Anode Materials. Chemistry - an Asian Journal, 2016, 11, 1711-1717.	3.3	20
32	A multi-stacked hyperporous silicon flake for highly active solar hydrogen production. Chemical Communications, 2016, 52, 10221-10224.	4.1	21
33	All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Materials, 2016, 8, e248-e248.	7.9	56
34	Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability. ACS Nano, 2016, 10, 10589-10597.	14.6	95
35	Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures. Nano Letters, 2016, 16, 1179-1185.	9.1	20
36	Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 2843-2851.	14.6	274

#	Article	IF	CITATIONS
37	Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Nanoscale, 2015, 7, 6126-6135.	5.6	40
38	Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery. Nano Energy, 2015, 12, 161-168.	16.0	62