Jaegeon Ryu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4928659/jaegeon-ryu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	1,184	18	34
papers	citations	h-index	g-index
39 ext. papers	1,408 ext. citations	12.2 avg, IF	4.81 L-index

#	Paper	IF	Citations
35	Vinyl-Integrated In Situ Cross-Linked Composite Gel Electrolytes for Stable Lithium Metal Anodes. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2922-2931	6.1	4
34	Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. <i>Energy Storage Materials</i> , 2021 , 36, 139-146	19.4	9
33	Nanoscale anodes for rechargeable batteries: Fundamentals and design principles 2021 , 91-157		O
32	Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2003761	15.6	29
31	Revisiting Classical Rocking Chair Lithium-Ion Battery. <i>Macromolecular Research</i> , 2020 , 28, 1175-1191	1.9	5
30	Room-Temperature Crosslinkable Natural Polymer Binder for High-Rate and Stable Silicon Anodes. <i>Advanced Functional Materials</i> , 2020 , 30, 1908433	15.6	52
29	Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. <i>Energy Storage Materials</i> , 2020 , 33, 164-172	19.4	6
28	Rational Structure Design of Fast-Charging NiSb Bimetal Nanosheet Anode for Lithium Ion Batteries. <i>Energy & Design</i> , Fuels, 2020 , 34, 10211-10217	4.1	2
27	Dual Buffering Inverse Design of Three-Dimensional Graphene-Supported Sn-TiO Anodes for Durable Lithium-Ion Batteries. <i>Small</i> , 2020 , 16, e2004861	11	6
26	Salt-mediated extraction of nanoscale Si building blocks: composite anode for Li-ion full battery with high energy density. <i>Materials Advances</i> , 2020 , 1, 2797-2803	3.3	0
25	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1902499	15.6	28
24	Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. <i>ACS Nano</i> , 2019 , 13, 2307-2315	16.7	93
23	Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage. <i>Nature Communications</i> , 2019 , 10, 2351	17.4	37
22	Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution. <i>Nature Communications</i> , 2019 , 10, 2364	17.4	29
21	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20325-20334	13	21
20	Three-Dimensional Monolithic Organic Battery Electrodes. ACS Nano, 2019, 13, 14357-14367	16.7	11
19	Directed Self-Assembly of Asymmetric Block Copolymers in Thin Films Driven by Uniaxially Aligned Topographic Patterns. <i>ACS Nano</i> , 2018 , 12, 1642-1649	16.7	12

(2015-2018)

18	Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 1739-1746	16.7	94
17	Fundamental Understanding of Nanostructured Si Electrodes: Preparation and Characterization. <i>ChemNanoMat</i> , 2018 , 4, 319-337	3.5	17
16	Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. <i>Nature Communications</i> , 2018 , 9, 2924	17.4	69
15	Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts. <i>Communications Chemistry</i> , 2018 , 1,	6.3	24
14	Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15961-15967	13	11
13	Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance. <i>Journal of Power Sources</i> , 2018 , 374, 217-224	8.9	28
12	Cost-effective approach for structural evolution of Si-based multicomponent for Li-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2095-2101	13	17
11	Sliding chains keep particles together. <i>Science</i> , 2017 , 357, 250-251	33.3	9
10	Practical considerations of Si-based anodes for lithium-ion battery applications. <i>Nano Research</i> , 2017 , 10, 3970-4002	10	70
9	Hybridizing germanium anodes with polysaccharide-derived nitrogen-doped carbon for high volumetric capacity of Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15828-15837	13	18
8	Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability. <i>ACS Nano</i> , 2016 , 10, 10589-10597	16.7	81
7	Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures. <i>Nano Letters</i> , 2016 , 16, 1179-85	11.5	18
6	Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes. <i>ACS Nano</i> , 2016 , 10, 2843-51	16.7	216
5	Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1711-7	4.5	16
4	A multi-stacked hyperporous silicon flake for highly active solar hydrogen production. <i>Chemical Communications</i> , 2016 , 52, 10221-4	5.8	16
3	All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. <i>NPG Asia Materials</i> , 2016 , 8, e248-e248	10.3	45
2	Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. <i>Nanoscale</i> , 2015 , 7, 6126-35	7.7	36
1	Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery. <i>Nano Energy</i> , 2015 , 12, 161-168	17.1	54