Coral G Warr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4928072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage selfâ€renewal is regulated by transient expression of <i>PDGF―and VEGFâ€related factor 2</i> . FEBS Journal, 2022, 289, 3735-3751.	2.2	2
2	Regulation of ecdysone production in <i>Drosophila</i> by neuropeptides and peptide hormones. Open Biology, 2021, 11, 200373.	1.5	36
3	Natural variation at the <i>Drosophila melanogaster Or22</i> odorant receptor locus is associated with changes in olfactory behaviour. Open Biology, 2021, 11, 210158.	1.5	5
4	A cis-regulatory-directed pipeline for the identification of genes involved in cardiac development and disease. Genome Biology, 2021, 22, 335.	3.8	4
5	A New Role for Neuropeptide F Signaling in Controlling Developmental Timing and Body Size in <i>Drosophila melanogaster</i> . Genetics, 2020, 216, 135-144.	1.2	7
6	Insulin-Like Signalling Influences the Coordination of Larval Hemocyte Number with Body Size in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2213-2220.	0.8	8
7	Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Journal of Biological Chemistry, 2019, 294, 18980-18991.	1.6	28
8	Molecular and Functional Evolution at the Odorant Receptor Or22 Locus in Drosophila melanogaster. Molecular Biology and Evolution, 2019, 36, 919-929.	3.5	16
9	The <i>torso-like</i> gene functions to maintain the structure of the vitelline membrane in <i>Nasonia vitripennis</i> , implying its co-option into <i>Drosophila</i> axis formation. Biology Open, 2019, 8, .	0.6	7
10	Torso-Like Is a Component of the Hemolymph and Regulates the Insulin Signaling Pathway in <i>Drosophila</i> . Genetics, 2018, 208, 1523-1533.	1.2	8
11	Genome-Wide Screen for New Components of the <i>Drosophila melanogaster</i> Torso Receptor Tyrosine Kinase Pathway. G3: Genes, Genomes, Genetics, 2018, 8, 761-769.	0.8	1
12	Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer. International Journal of Molecular Sciences, 2018, 19, 4110.	1.8	22
13	Maternal Torso-Like Coordinates Tissue Folding During <i>Drosophila</i> Gastrulation. Genetics, 2017, 206, 1459-1468.	1.2	11
14	Differential regulation of protein tyrosine kinase signalling by Dock and the <scp>PTP</scp> 61F variants. FEBS Journal, 2017, 284, 2231-2250.	2.2	9
15	MACPF/CDC proteins in development: Insights from Drosophila torso-like. Seminars in Cell and Developmental Biology, 2017, 72, 163-170.	2.3	14
16	A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3. American Journal of Human Genetics, 2017, 100, 128-137.	2.6	96
17	A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity. PLoS ONE, 2017, 12, e0181237.	1.1	8
18	Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like. Genetics, 2016, 204, 675-681.	1.2	11

CORAL G WARR

#	Article	IF	CITATIONS
19	Reduced glutathione biosynthesis in <i>Drosophila melanogaster</i> causes neuronal defects linked to copper deficiency. Journal of Neurochemistry, 2016, 137, 360-370.	2.1	21
20	A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process. International Journal of Biochemistry and Cell Biology, 2015, 69, 11-19.	1.2	15
21	Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini. Nature Communications, 2015, 6, 8759.	5.8	31
22	Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications. Bioinspiration and Biomimetics, 2014, 9, 046007.	1.5	19
23	The Drosophila melanogaster Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function. PLoS Genetics, 2014, 10, e1004209.	1.5	19
24	Copper overload and deficiency both adversely affect the central nervous system of Drosophila. Metallomics, 2014, 6, 2223-2229.	1.0	28
25	Vacuolar-type H ⁺ -ATPase subunits and the neurogenic protein big brain are required for optimal copper and zinc uptake. Metallomics, 2014, 6, 2100-2108.	1.0	5
26	Trunk cleavage is essential for Drosophila terminal patterning and can occur independently of Torso-like. Nature Communications, 2014, 5, 3419.	5.8	26
27	High resolution structure of cleaved Serpin 42ÂDa from Drosophila melanogaster. BMC Structural Biology, 2014, 14, 14.	2.3	15
28	Capturing embryonic development from metamorphosis: how did the terminal patterning signalling pathway of Drosophila evolve?. Current Opinion in Insect Science, 2014, 1, 45-51.	2.2	9
29	In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes. Journal of Biological Inorganic Chemistry, 2013, 18, 323-332.	1.1	25
30	Torso-like functions independently of Torso to regulate <i>Drosophila</i> growth and developmental timing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14688-14692.	3.3	48
31	The Toll and Imd Pathways Are Not Required for Wolbachia-Mediated Dengue Virus Interference. Journal of Virology, 2013, 87, 11945-11949.	1.5	84
32	The Nucleus- and Endoplasmic Reticulum-Targeted Forms of Protein Tyrosine Phosphatase 61F Regulate <i>Drosophila</i> Growth, Life Span, and Fecundity. Molecular and Cellular Biology, 2013, 33, 1345-1356.	1.1	22
33	Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2012, 215, 3254-65.	0.8	48
34	Chemical Communication in Insects: The Peripheral Odour Coding System of Drosophila Melanogaster. Advances in Experimental Medicine and Biology, 2012, 739, 59-77.	0.8	28
35	A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour. PLoS ONE, 2012, 7, e35641.	1.1	20
36	Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling. Biochemical Journal, 2011, 439, 151-159.	1.7	32

CORAL G WARR

#	Article	IF	CITATIONS
37	Functional and molecular evolution of olfactory neurons and receptors for aliphatic esters across the Drosophila genus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 97-109.	0.7	52
38	Detection of Volatile Indicators of Illicit Substances by the Olfactory Receptors of Drosophila melanogaster. Chemical Senses, 2010, 35, 613-625.	1.1	60
39	Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochemistry and Molecular Biology, 2009, 39, 189-197.	1.2	124
40	Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochemistry and Molecular Biology, 2008, 38, 770-780.	1.2	262
41	Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. Journal of Neuroscience Methods, 2007, 159, 189-194.	1.3	71
42	Selective Pressures on Drosophila Chemosensory Receptor Genes. Journal of Molecular Evolution, 2007, 64, 628-636.	0.8	26
43	Molecular and cellular organization of insect chemosensory neurons. BioEssays, 2006, 28, 23-34.	1.2	41
44	Coexpression of Two Functional Odor Receptors in One Neuron. Neuron, 2005, 45, 661-666.	3.8	220
45	Integrating the Molecular and Cellular Basis of Odor Coding in the Drosophila Antenna. Neuron, 2003, 37, 827-841.	3.8	504
46	Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14537-14542.	3.3	703
47	A Unified Nomenclature System for the Drosophila Odorant Receptors. Cell, 2000, 102, 145-146.	13.5	37
48	Candidate Taste Receptors in Drosophila. Science, 2000, 287, 1830-1834.	6.0	568
49	A Novel Family of Divergent Seven-Transmembrane Proteins. Neuron, 1999, 22, 327-338.	3.8	1,092
50	Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochemical Journal, 1996, 314, 497-503.	1.7	99