
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4928058/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity In Humans. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2402-2410.	1.8	3,201
2	Reciprocal Relationships Between Insulin Resistance and Endothelial Dysfunction. Circulation, 2006, 113, 1888-1904.	1.6	1,387
3	Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E15-E26.	1.8	1,114
4	Adiponectin Stimulates Production of Nitric Oxide in Vascular Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 45021-45026.	1.6	862
5	Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity In Humans. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2402-2410.	1.8	793
6	Roles for Insulin Receptor, PI3-Kinase, and <i>Akt</i> in Insulin-Signaling Pathways Related to Production of Nitric Oxide in Human Vascular Endothelial Cells. Circulation, 2000, 101, 1539-1545.	1.6	699
7	Cardiovascular Actions of Insulin. Endocrine Reviews, 2007, 28, 463-491.	8.9	685
8	Serine Phosphorylation of Insulin Receptor Substrate 1 by Inhibitor κB Kinase Complex. Journal of Biological Chemistry, 2002, 277, 48115-48121.	1.6	640
9	New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biology, 2014, 2, 187-195.	3.9	603
10	Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB Journal, 2008, 22, 246-260.	0.2	514
11	Insulin-stimulated Activation of eNOS Is Independent of Ca2+ but Requires Phosphorylation by Akt at Ser1179. Journal of Biological Chemistry, 2001, 276, 30392-30398.	1.6	478
12	Brain Insulin Receptors and Spatial Memory. Journal of Biological Chemistry, 1999, 274, 34893-34902.	1.6	469
13	Insulin and the insulin receptor in experimental models of learning and memory. European Journal of Pharmacology, 2004, 490, 71-81.	1.7	415
14	Repeatability Characteristics of Simple Indices of Insulin Resistance: Implications for Research Applications. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5457-5464.	1.8	333
15	Physiological Role of Akt in Insulin-Stimulated Translocation of GLUT4 in Transfected Rat Adipose Cells. Molecular Endocrinology, 1997, 11, 1881-1890.	3.7	332
16	Inflammatory Markers and the Metabolic Syndrome. Journal of the American College of Cardiology, 2005, 46, 1978-1985.	1.2	332
17	High Density Lipoprotein-induced Endothelial Nitric-oxide Synthase Activation Is Mediated by Akt and MAP Kinases. Journal of Biological Chemistry, 2003, 278, 9142-9149.	1.6	329
18	EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1378-E1387.	1.8	313

#	Article	IF	CITATIONS
19	Leptin and Cardiovascular Disease. Circulation, 2008, 117, 3238-3249.	1.6	305
20	Epigallocatechin-3-gallate (EGCG), A Green Tea Polyphenol, Suppresses Hepatic Gluconeogenesis through 5′-AMP-activated Protein Kinase. Journal of Biological Chemistry, 2007, 282, 30143-30149.	1.6	296
21	Mutations in the Insulin Receptor Gene. Endocrine Reviews, 1992, 13, 566-595.	8.9	287
22	Inhibition of Phosphatidylinositol 3-Kinase Enhances Mitogenic Actions of Insulin in Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 1794-1799.	1.6	285
23	Inhibition of Insulin Sensitivity by Free Fatty Acids Requires Activation of Multiple Serine Kinases in 3T3-L1 Adipocytes. Molecular Endocrinology, 2004, 18, 2024-2034.	3.7	281
24	Insulin Stimulates Both Endothelin and Nitric Oxide Activity in the Human Forearm. Circulation, 1999, 100, 820-825.	1.6	279
25	Additive Beneficial Effects of Losartan Combined With Simvastatin in the Treatment of Hypercholesterolemic, Hypertensive Patients. Circulation, 2004, 110, 3687-3692.	1.6	275
26	Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H813-H822.	1.5	267
27	Adiponectin and Cardiovascular Disease. Journal of the American College of Cardiology, 2007, 49, 531-538.	1.2	253
28	S6K Directly Phosphorylates IRS-1 on Ser-270 to Promote Insulin Resistance in Response to TNF-α Signaling through IKK2. Journal of Biological Chemistry, 2008, 283, 35375-35382.	1.6	244
29	Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E782-E792.	1.8	241
30	Aspirin Inhibits Serine Phosphorylation of Insulin Receptor Substrate 1 in Tumor Necrosis Factor-treated Cells through Targeting Multiple Serine Kinases. Journal of Biological Chemistry, 2003, 278, 24944-24950.	1.6	222
31	Assessing the Predictive Accuracy of QUICKI as a Surrogate Index for Insulin Sensitivity Using a Calibration Model. Diabetes, 2005, 54, 1914-1925.	0.3	218
32	Insulin Receptor Substrate-1 and Phosphoinositide-Dependent Kinase-1 Are Required for Insulin-Stimulated Production of Nitric Oxide in Endothelial Cells. Molecular Endocrinology, 2002, 16, 1931-1942.	3.7	203
33	Protein Kinase C-ζ Phosphorylates Insulin Receptor Substrate-1 and Impairs Its Ability to Activate Phosphatidylinositol 3-Kinase in Response to Insulin. Journal of Biological Chemistry, 2001, 276, 3543-3549.	1.6	201
34	Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn. Journal of Biological Chemistry, 2007, 282, 13736-13745.	1.6	200
35	Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Current Diabetes Reports, 2003, 3, 279-288.	1.7	197
36	FOXO1 Represses Peroxisome Proliferator-activated Receptor-γ1 and -γ2 Gene Promoters in Primary Adipocytes. Journal of Biological Chemistry, 2006, 281, 19881-19891.	1.6	197

#	Article	IF	CITATIONS
37	Atorvastatin Causes Insulin Resistance and Increases Ambient Glycemia in Hypercholesterolemic Patients. Journal of the American College of Cardiology, 2010, 55, 1209-1216.	1.2	193
38	Additive Beneficial Effects of Fenofibrate Combined With Atorvastatin in the Treatment of Combined Hyperlipidemia. Journal of the American College of Cardiology, 2005, 45, 1649-1653.	1.2	192
39	Insulin Signalling. Cellular Signalling, 1999, 11, 563-574.	1.7	180
40	Consequences of Lipid Droplet Coat Protein Downregulation in Liver Cells. Diabetes, 2008, 57, 2037-2045.	0.3	179
41	A mathematical model of metabolic insulin signaling pathways. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1084-E1101.	1.8	177
42	Beneficial Effects of Fenofibrate to Improve Endothelial Dysfunction and Raise Adiponectin Levels in Patients With Primary Hypertriglyceridemia. Diabetes Care, 2005, 28, 1419-1424.	4.3	176
43	Caveolin-1 Interacts with the Insulin Receptor and Can Differentially Modulate Insulin Signaling in Transfected Cos-7 Cells and Rat Adipose Cells. Molecular Endocrinology, 1999, 13, 2013-2024.	3.7	170
44	An Integrated View of Insulin Resistance and Endothelial Dysfunction. Endocrinology and Metabolism Clinics of North America, 2008, 37, 685-711.	1.2	158
45	High-dose oral vitamin C partially replenishes vitamin C levels in patients with Type 2 diabetes and low vitamin C levels but does not improve endothelial dysfunction or insulin resistance. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H137-H145.	1.5	153
46	Vascular and Metabolic Effects of Combined Therapy With Ramipril and Simvastatin in Patients With Type 2 Diabetes. Hypertension, 2005, 45, 1088-1093.	1.3	146
47	Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. American Journal of Clinical Nutrition, 2008, 88, 1685-1696.	2.2	142
48	Tyr612 and Tyr632 in Human Insulin Receptor Substrate-1 Are Important for Full Activation of Insulin-Stimulated Phosphatidylinositol 3-Kinase Activity and Translocation of GLUT4 in Adipose Cells*. Endocrinology, 2001, 142, 2833-2840.	1.4	138
49	Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E261-E270.	1.8	136
50	Insulin action and insulin resistance in vascular endothelium. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 523-530.	1.3	134
51	Insulin Receptor Dysfunction Impairs Cellular Clearance of Neurotoxic Oligomeric Aβ. Journal of Biological Chemistry, 2009, 284, 18742-18753.	1.6	130
52	Limitations of the Fasting Glucose to Insulin Ratio as an Index of Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4615-4617.	1.8	125
53	QUICKI is a useful index of insulin sensitivity in subjects with hypertension. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E804-E812.	1.8	125
54	Phosphorylation of PTP1B at Ser ⁵⁰ by Akt Impairs Its Ability to Dephosphorylate the Insulin Receptor. Molecular Endocrinology, 2001, 15, 1768-1780.	3.7	121

MICHAEL J QUON

#	Article	IF	CITATIONS
55	Impaired Insulin Secretion in the Turner Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3516-3520.	1.8	119
56	Protein-tyrosine Phosphatases PTP1B and Syp Are Modulators of Insulin-stimulated Translocation of GLUT4 in Transfected Rat Adipose Cells. Journal of Biological Chemistry, 1997, 272, 8026-8031.	1.6	118
57	Differential metabolic effects of distinct statins. Atherosclerosis, 2011, 215, 1-8.	0.4	116
58	Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis, 2009, 206, 569-574.	0.4	115
59	SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulinâ€like growth factor receptor pathway. Arthritis and Rheumatism, 2010, 62, 1383-1392.	6.7	113
60	Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis, 2014, 233, 721-728.	0.4	111
61	Non-Insulin-Mediated Glucose Disappearance in Subjects With IDDM: Discordance Between Experimental Results and Minimal Model Analysis. Diabetes, 1994, 43, 890-896.	0.3	110
62	Simvastatin Improves Flow-Mediated Dilation but Reduces Adiponectin Levels and Insulin Sensitivity in Hypercholesterolemic Patients. Diabetes Care, 2008, 31, 776-782.	4.3	107
63	Differential metabolic effects of pravastatin and simvastatin in hypercholesterolemic patients. Atherosclerosis, 2009, 204, 483-490.	0.4	107
64	Peroxisome Proliferator-activated Receptor-Î ³ Represses GLUT4 Promoter Activity in Primary Adipocytes, and Rosiglitazone Alleviates This Effect. Journal of Biological Chemistry, 2003, 278, 30614-30623.	1.6	104
65	Protein Kinase C-ζ and Phosphoinositide-dependent Protein Kinase-1 Are Required for Insulin-induced Activation of ERK in Rat Adipocytes. Journal of Biological Chemistry, 1999, 274, 30495-30500.	1.6	101
66	Tyrosine kinase-deficient mutant human insulin receptors (Met1153>Ile) overexpressed in transfected rat adipose cells fail to mediate translocation of epitope-tagged GLUT4 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5587-5591.	3.3	100
67	Insulin action in vascular endothelium: potential mechanisms linking insulin resistance with hypertension. Diabetes, Obesity and Metabolism, 2000, 2, 285-292.	2.2	99
68	Anti-inflammatory and metabolic effects of candesartan in hypertensive patients. International Journal of Cardiology, 2006, 108, 96-100.	0.8	96
69	Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E756-E764.	1.8	96
70	Dehydroepiandrosterone Mimics Acute Actions of Insulin to Stimulate Production of Both Nitric Oxide and Endothelin 1 via Distinct Phosphatidylinositol 3-Kinase- and Mitogen-Activated Protein Kinase-Dependent Pathways in Vascular Endothelium. Molecular Endocrinology, 2006, 20, 1153-1163.	3.7	94
71	Role of Lipotoxicity in Endothelial Dysfunction. Heart Failure Clinics, 2012, 8, 589-607.	1.0	94
72	Repeatability Characteristics of Simple Indices of Insulin Resistance: Implications for Research Applications. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5457-5464.	1.8	94

#	Article	IF	CITATIONS
73	Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-1±. Journal of Nutritional Biochemistry, 2012, 23, 1134-1145.	1.9	93
74	Green Tea Polyphenol Epigallocatechin Gallate Reduces Endothelin-1 Expression and Secretion in Vascular Endothelial Cells: Roles for AMP-Activated Protein Kinase, Akt, and FOXO1. Endocrinology, 2010, 151, 103-114.	1.4	91
75	Beneficial Vascular and Metabolic Effects of Peroxisome Proliferator-Activated Receptor-α Activators. Hypertension, 2005, 46, 1086-1092.	1.3	89
76	Treatment of Spontaneously Hypertensive Rats With Rosiglitazone and/or Enalapril Restores Balance Between Vasodilator and Vasoconstrictor Actions of Insulin With Simultaneous Improvement in Hypertension and Insulin Resistance. Diabetes, 2006, 55, 3594-3603.	0.3	85
77	Transfection of DNA into Isolated Rat Adipose Cells by Electroporation:. Biochemical and Biophysical Research Communications, 1993, 194, 338-346.	1.0	84
78	Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E679-E686.	1.8	83
79	Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic clamp estimates in rats. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1023-E1029.	1.8	81
80	The Union of Vascular and Metabolic Actions of Insulin in Sickness and in Health. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 889-891.	1,1	79
81	Exenatide Treatment for 6 Months Improves Insulin Sensitivity in Adults With Type 1 Diabetes. Diabetes Care, 2014, 37, 666-670.	4.3	76
82	Reciprocal relationships between abnormal metabolic parameters and endothelial dysfunction. Current Opinion in Lipidology, 2007, 18, 58-65.	1.2	72
83	Does reversal of oxidative stress and inflammation provide vascular protection?. Cardiovascular Research, 2008, 81, 649-659.	1.8	71
84	Phosphorylation of Critical Serine Residues in Gem Separates Cytoskeletal Reorganization from Down-Regulation of Calcium Channel Activity. Molecular and Cellular Biology, 2004, 24, 651-661.	1.1	70
85	Vascular and Metabolic Actions of the Green Tea Polyphenol Epigallocatechin Gallate. Current Medicinal Chemistry, 2014, 22, 59-69.	1.2	70
86	Distinct vascular and metabolic effects of different classes of anti-hypertensive drugs. International Journal of Cardiology, 2010, 140, 73-81.	0.8	68
87	Phosphorylation of Ser24 in the Pleckstrin Homology Domain of Insulin Receptor Substrate-1 by Mouse Pelle-like Kinase/Interleukin-1 Receptor-associated Kinase. Journal of Biological Chemistry, 2005, 280, 23173-23183.	1.6	65
88	Cellular Stress, Excessive Apoptosis, and the Effect of Metformin in a Mouse Model of Type 2 Diabetic Embryopathy. Diabetes, 2015, 64, 2526-2536.	0.3	64
89	Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter. Journal of Biological Chemistry, 2000, 275, 40817-40826.	1.6	63
90	Glucose Activates Protein Kinase C-ζ/λ through Proline-rich Tyrosine Kinase-2, Extracellular Signal-regulated Kinase, and Phospholipase D. Journal of Biological Chemistry, 2001, 276, 35537-35545.	1.6	63

#	Article	IF	CITATIONS
91	Mouse 3-Phosphoinositide-dependent Protein Kinase-1 Undergoes Dimerization and trans-Phosphorylation in the Activation Loop. Journal of Biological Chemistry, 2003, 278, 42913-42919.	1.6	61
92	Additive Beneficial Effects of Fenofibrate Combined With Candesartan in the Treatment of Hypertriglyceridemic Hypertensive Patients. Diabetes Care, 2006, 29, 195-201.	4.3	60
93	Cyclic Nucleotide Phosphodiesterase 3B Is a Downstream Target of Protein Kinase B and May Be Involved in Regulation of Effects of Protein Kinase B on Thymidine Incorporation in FDCP2 Cells. Journal of Immunology, 2000, 164, 4678-4688.	0.4	58
94	Oral Glucosamine for 6 Weeks at Standard Doses Does Not Cause or Worsen Insulin Resistance or Endothelial Dysfunction in Lean or Obese Subjects. Diabetes, 2006, 55, 3142-3150.	0.3	58
95	Endothelial Dysfunction in Mice with Streptozotocin-induced Type 1 Diabetes Is Opposed by Compensatory Overexpression of Cyclooxygenase-2 in the Vasculature. Endocrinology, 2009, 150, 849-861.	1.4	58
96	PKC-Â Mediates Insulin Effects on Glucose Transport in Cultured Preadipocyte-Derived Human Adipocytes. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 716-723.	1.8	58
97	Action of Insulin Receptor Substrate-3 (IRS-3) and IRS-4 to Stimulate Translocation of GLUT4 in Rat Adipose Cells. Molecular Endocrinology, 1999, 13, 505-514.	3.7	56
98	Escherichia coli K1 Internalization via Caveolae Requires Caveolin-1 and Protein Kinase Cα Interaction in Human Brain Microvascular Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 50716-50724.	1.6	55
99	Combination therapy for treatment or prevention of atherosclerosis: Focus on the lipid-RAAS interaction. Atherosclerosis, 2010, 209, 307-313.	0.4	54
100	Negative Regulation of Insulin-Stimulated Mitogen-Activated Protein Kinase Signaling By Grb10. Molecular Endocrinology, 2004, 18, 350-358.	3.7	52
101	Tumor Necrosis Factor-α Antagonism Improves Vasodilation During Hyperinsulinemia in Metabolic Syndrome. Diabetes Care, 2008, 31, 1439-1441.	4.3	52
102	Significant differential effects of omega-3 fatty acids and fenofibrate in patients with hypertriglyceridemia. Atherosclerosis, 2012, 220, 537-544.	0.4	52
103	Secretion of Annexin II via Activation of Insulin Receptor and Insulin-like Growth Factor Receptor. Journal of Biological Chemistry, 2003, 278, 4205-4215.	1.6	50
104	A Phosphotyrosyl Mimetic Peptide Reverses Impairment of Insulin-Stimulated Translocation of GLUT4 Caused by Overexpression of PTP1B in Rat Adipose Cells. Biochemistry, 1999, 38, 384-389.	1.2	49
105	Vasodilator Response to Systemic But Not to Local Hyperinsulinemia in the Human Forearm. Hypertension, 1998, 32, 740-745.	1.3	48
106	Differential metabolic effects of rosuvastatin and pravastatin in hypercholesterolemic patients. International Journal of Cardiology, 2013, 166, 509-515.	0.8	48
107	Insulin impairs endothelium-dependent vasodilation independent of insulin sensitivity or lipid profile. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H76-H82.	1.5	48
108	Insulin Receptor Binding Kinetics: Modeling and Simulation Studies. Journal of Theoretical Biology, 2000, 205, 355-364.	0.8	47

#	Article	IF	CITATIONS
109	Evidence for several independent genetic variants affecting lipoprotein (a) cholesterol levels. Human Molecular Genetics, 2015, 24, 2390-2400.	1.4	47
110	Insulin Receptor Substrate-2 (IRS-2) Can Mediate the Action of Insulin to Stimulate Translocation of GLUT4 to the Cell Surface in Rat Adipose Cells. Journal of Biological Chemistry, 1997, 272, 29829-29833.	1.6	46
111	Effects of overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT) and glucosamine treatment on translocation of GLUT4 in rat adipose cells. Molecular and Cellular Endocrinology, 1997, 135, 67-77.	1.6	46
112	A Novel T608R Missense Mutation in Insulin Receptor Substrate-1 Identified in a Subject with Type 2 Diabetes Impairs Metabolic Insulin Signaling. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1468-1475.	1.8	45
113	Vascular and metabolic effects of treatment of combined hyperlipidemia: Focus on statins and fibrates. International Journal of Cardiology, 2008, 124, 149-159.	0.8	45
114	QUICKI Is a Useful and Accurate Index of Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 949-950.	1.8	44
115	Deterioration of glucose homeostasis in type 2 diabetic patients one year after beginning of statins therapy. Atherosclerosis, 2012, 223, 197-203.	0.4	44
116	PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function. Biochemical and Biophysical Research Communications, 2006, 349, 976-986.	1.0	43
117	Additive beneficial cardiovascular and metabolic effects of combination therapy with ramipril and candesartan in hypertensive patients. European Heart Journal, 2006, 28, 1440-1447.	1.0	43
118	Efonidipine Simultaneously Improves Blood Pressure, Endothelial Function, and Metabolic Parameters in Nondiabetic Patients With Hypertension. Diabetes Care, 2007, 30, 1605-1607.	4.3	43
119	The effects of simvastatin, losartan, and combined therapy on soluble CD40 ligand in hypercholesterolemic, hypertensive patients. Atherosclerosis, 2007, 190, 205-211.	0.4	43
120	Treatment of spontaneously hypertensive rats with rosiglitazone ameliorates cardiovascular pathophysiology via antioxidant mechanisms in the vasculature. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E685-E694.	1.8	43
121	C-Reactive Protein Inhibits Insulin Activation of Endothelial Nitric Oxide Synthase via the Immunoreceptor Tyrosine-Based Inhibition Motif of FcγRIIB and SHIP-1. Circulation Research, 2009, 104, 1275-1282.	2.0	43
122	Endothelial dysfunction due to selective insulin resistance in vascular endothelium: insights from mechanistic modeling. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E629-E646.	1.8	43
123	Insulin signal transduction pathways. Trends in Endocrinology and Metabolism, 1994, 5, 369-376.	3.1	41
124	The Luteinizing Hormone-releasing Hormone Inhibits the Anti-apoptotic Activity of Insulin-like Growth Factor-1 in Pituitary αT3 Cells by Protein Kinase Cα-mediated Negative Regulation of Akt. Journal of Biological Chemistry, 2004, 279, 52500-52516.	1.6	41
125	ASK1 mediates the teratogenicity of diabetes in the developing heart by inducing ER stress and inhibiting critical factors essential for cardiac development. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E487-E499.	1.8	41
126	Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E1031-E1036.	1.8	40

#	Article	IF	CITATIONS
127	Substitution of the Autophosphorylation Site Thr516with a Negatively Charged Residue Confers Constitutive Activity to Mouse 3-Phosphoinositide-dependent Protein Kinase-1 in Cells. Journal of Biological Chemistry, 2002, 277, 16632-16638.	1.6	40
128	Protein Kinase A-α Directly Phosphorylates FoxO1 in Vascular Endothelial Cells to Regulate Expression of Vascular Cellular Adhesion Molecule-1 mRNA. Journal of Biological Chemistry, 2011, 286, 6423-6432.	1.6	40
129	Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1077-E1088.	1.8	40
130	Regulation of Leptin Promoter Function by Sp1, C/EBP, and a Novel Factor. Endocrinology, 1998, 139, 1013-1022.	1.4	40
131	Caveolin-1 Interacts with the Insulin Receptor and Can Differentially Modulate Insulin Signaling in Transfected Cos-7 Cells and Rat Adipose Cells. Molecular Endocrinology, 1999, 13, 2013-2024.	3.7	39
132	MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E298-E305.	1.8	38
133	Dehydroepiandrosterone Stimulates Phosphorylation of FoxO1 in Vascular Endothelial Cells via Phosphatidylinositol 3-Kinase- and Protein Kinase A-dependent Signaling Pathways to Regulate ET-1 Synthesis and Secretion. Journal of Biological Chemistry, 2008, 283, 29228-29238.	1.6	38
134	Csα Deficiency in Adipose Tissue Leads to a Lean Phenotype with Divergent Effects on Cold Tolerance and Diet-Induced Thermogenesis. Cell Metabolism, 2010, 11, 320-330.	7.2	38
135	Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure. Scientific Reports, 2016, 5, 17927.	1.6	38
136	Globular adiponectin counteracts VCAM-1-mediated monocyte adhesion via AdipoR1/NF-κB/COX-2 signaling in human aortic endothelial cells. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1143-E1154.	1.8	37
137	Vascular, metabolic, and inflammatory abnormalities in normoglycemic offspring of patients with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2007, 56, 413-419.	1.5	35
138	B4GALNT3 Expression Predicts a Favorable Prognosis and Suppresses Cell Migration and Invasion via β1 Integrin Signaling in Neuroblastoma. American Journal of Pathology, 2011, 179, 1394-1404.	1.9	34
139	Effects of fenofibrate therapy on circulating adipocytokines in patients with primary hypertriglyceridemia. Atherosclerosis, 2011, 214, 144-147.	0.4	34
140	Insulin Stimulates Increased Catalytic Activity of Phosphoinositide-Dependent Kinase-1 by a Phosphorylation-Dependent Mechanism. Biochemistry, 2001, 40, 11851-11859.	1.2	33
141	Essential Role for Membrane Lipid Rafts in Interleukin-1Â-Induced Nitric Oxide Release From Insulin-Secreting Cells: Potential Regulation by Caveolin-1+. Diabetes, 2005, 54, 2576-2585.	0.3	33
142	Are statins effective for simultaneously treating dyslipidemias and hypertension?. Atherosclerosis, 2008, 196, 1-8.	0.4	33
143	Tyr612 and Tyr632 in Human Insulin Receptor Substrate-1 Are Important for Full Activation of Insulin-Stimulated Phosphatidylinositol 3-Kinase Activity and Translocation of GLUT4 in Adipose Cells. Endocrinology, 2001, 142, 2833-2840.	1.4	33
144	Effects of Overexpressing Wild-Type and Mutant PDGF Receptors on Translocation of GLUT4 in Transfected Rat Adipose Cells. Biochemical and Biophysical Research Communications, 1996, 226, 587-594.	1.0	32

#	Article	IF	CITATIONS
145	PAX3/Forkhead Homolog in Rhabdomyosarcoma Oncoprotein Activates Glucose Transporter 4 Gene Expressionin Vivoandin Vitro. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5312-5324.	1.8	32
146	Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1111-H1119.	1.5	32
147	Overexpression of Protein Tyrosine Phosphatase-α (PTP-α) but not PTP-κ Inhibits Translocation of GLUT4 in Rat Adipose Cells. Biochemical and Biophysical Research Communications, 1999, 255, 200-207.	1.0	31
148	Protein Kinase C-ζ Phosphorylates Insulin Receptor Substrate-1, -3, and -4 But Not -2: Isoform Specific Determinants of Specificity in Insulin Signaling. Endocrinology, 2008, 149, 2451-2458.	1.4	31
149	Potentially important considerations in choosing specific statin treatments to reduce overall morbidity and mortality. International Journal of Cardiology, 2013, 167, 1696-1702.	0.8	31
150	Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D. Biochemical Journal, 2002, 362, 665.	1.7	30
151	Limitations of the Fasting Glucose to Insulin Ratio as an Index of Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4615-4617.	1.8	30
152	Diagnosing Insulin Resistance by Simple Quantitative Methods in Subjects With Normal Glucose Metabolism: Response to Ascaso et al Diabetes Care, 2004, 27, 1247-1248.	4.3	29
153	Additive beneficial effects of atorvastatin combined with amlodipine in patients with mild-to-moderate hypertension. International Journal of Cardiology, 2011, 146, 319-325.	0.8	29
154	Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. Journal of Biological Chemistry, 2017, 292, 12339-12350.	1.6	28
155	A mathematical model and computer simulation study of insulin receptor regulation. Journal of Theoretical Biology, 1991, 150, 59-72.	0.8	26
156	α2-Heremans Schmid Glycoprotein Inhibits Insulin-Stimulated Elk-1 Phosphorylation, But Not Glucose Transport, in Rat Adipose Cells**This work was supported in part by a Research Award grant from the American Diabetes Association (to M.J.Q.) Endocrinology, 1998, 139, 4147-4154.	1.4	26
157	Comparison between Surrogate Indexes of Insulin Sensitivity/Resistance and Hyperinsulinemic Euglycemic Glucose Clamps in Rhesus Monkeys. Endocrinology, 2011, 152, 414-423.	1.4	26
158	Combination Pravastatin and Valsartan Treatment Has Additive Beneficial Effects to Simultaneously Improve Both Metabolic and Cardiovascular Phenotypes Beyond That of Monotherapy With Either Drug in Patients With Primary Hypercholesterolemia. Diabetes, 2013, 62, 3547-3552.	0.3	26
159	Combined therapy with ramipril and simvastatin has beneficial additive effects on tissue factor activity and prothrombin fragment 1+2 in patients with type 2 diabetes. Atherosclerosis, 2007, 194, 230-237.	0.4	25
160	Postbinding characterization of five naturally occurring mutations in the human insulin receptor gene: impaired insulin-stimulated c-jun expression and thymidine incorporation despite normal receptor autophosphorylation. Biochemistry, 1992, 31, 9947-9954.	1.2	23
161	Two mutant alleles of the insulin receptor gene in a family with a genetic form of insulin resistance: a 10 base pair deletion in exon 1 and a mutation substituting serine for asparagine-462. Human Genetics, 1995, 95, 174-182.	1.8	22
162	Characterization of a Mutant GLUT4 Lacking the N-Glycosylation Site: Studies in Transfected Rat Adipose Cells. Biochemical and Biophysical Research Communications, 1996, 218, 76-82.	1.0	22

MICHAEL J QUON

#	Article	IF	CITATIONS
163	Effects of simvastatin therapy on circulating adipocytokines in patients with hypercholesterolemia. International Journal of Cardiology, 2011, 146, 434-437.	0.8	21
164	Caveats to aggressive lowering of lipids by specific statins. International Journal of Cardiology, 2012, 154, 97-101.	0.8	21
165	Differential Metabolic Actions of Specific Statins: Clinical and Therapeutic Considerations. Antioxidants and Redox Signaling, 2014, 20, 1286-1299.	2.5	20
166	Vascular and metabolic effects of candesartan: insights from therapeutic interventions. Journal of Hypertension, 2006, 24, S31-S38.	0.3	19
167	Race affects the association of obesity measures with insulin sensitivity. American Journal of Clinical Nutrition, 2020, 111, 515-525.	2.2	19
168	Estrogen deprivation in primate pregnancy leads to insulin resistance in offspring. Journal of Endocrinology, 2016, 230, 171-183.	1.2	18
169	Combining Potent Statin Therapy with Other Drugs to Optimize Simultaneous Cardiovascular and Metabolic Benefits while Minimizing Adverse Events. Korean Circulation Journal, 2017, 47, 432.	0.7	18
170	PTEN Does Not Modulate GLUT4 Translocation in Rat Adipose Cells under Physiological Conditions. Biochemical and Biophysical Research Communications, 2001, 288, 1011-1017.	1.0	17
171	Limited predictive ability of surrogate indices of insulin sensitivity/resistance in Asian-Indian men. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E1106-E1112.	1.8	17
172	Dominant negative FADD dissipates the proapoptotic signalosome of the unfolded protein response in diabetic embryopathy. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E861-E873.	1.8	17
173	Role of Pleckstrin Homology Domain in Regulating Membrane Targeting and Metabolic Function of Insulin Receptor Substrate 3. Molecular Endocrinology, 2003, 17, 1568-1579.	3.7	16
174	A mathematical model and computer simulation study of insulin sensitive glucose transporter regulation. Journal of Theoretical Biology, 1991, 150, 93-107.	0.8	15
175	Infliximab therapy restores adiponectin expression in perivascular adipose tissue and improves endothelial nitric oxide-mediated vasodilation in mice with type 1 diabetes. Vascular Pharmacology, 2016, 87, 83-91.	1.0	15
176	QUICKI Is a Useful and Accurate Index of Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 949-950.	1.8	15
177	Simvastatin Treatment Protects Myocardium in Noncoronary Artery Cardiac Surgery by Inhibiting Apoptosis Through miR-15a-5p Targeting. Journal of Cardiovascular Pharmacology, 2018, 72, 176-185.	0.8	14
178	Targeting converging therapeutic pathways to overcome hypertension. International Journal of Cardiology, 2009, 132, 297-299.	0.8	12
179	Acute vascular and metabolic actions of the green tea polyphenol epigallocatechin 3-gallate in rat skeletal muscle. Journal of Nutritional Biochemistry, 2017, 40, 23-31.	1.9	12
180	Simple modeling allows prediction of steady-state glucose disposal rate from early data in hyperinsulinemic glucose clamps. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E229-E236.	1.8	10

MICHAEL J QUON

#	Article	IF	CITATIONS
181	Peritoneal Dialysis Using Bicarbonate ontaining Dialysate Produced by Automated Dialysate Delivery Machine. Artificial Organs, 1982, 6, 67-69.	1.0	9
182	The importance of considering alternative or combination strategies for lowering LDL-C. International Journal of Cardiology, 2009, 136, 115-119.	0.8	9
183	Extracellular conversion of adiponectin hexamers into trimers. Bioscience Reports, 2012, 32, 641-652.	1.1	9
184	Monocyte DPP4 Expression in Human Atherosclerosis Is Associated With Obesity and Dyslipidemia. Diabetes Care, 2018, 41, e1-e3.	4.3	9
185	Insulin Action and Endothelial Function. , 1999, , 247-263.		7
186	Combination Therapy for Treatment or Prevention of Atherosclerosis. Hypertension, 2008, 52, e18; author reply e19.	1.3	6
187	Molecular and Cellular Aspects of Insulin Resistance: Implications for Diabetes. , 0, , 171-200.		5
188	Role of Renin-Angiotensin System Blockades in Reciprocal Relationship Between Insulin Resistance and Endothelial Dysfunction. Hypertension, 2010, 56, e169; author reply e170.	1.3	5
189	When MINMOD Artifactually Interprets Strong Insulin Secretion as Weak Insulin Action. Frontiers in Physiology, 2021, 12, 601894.	1.3	5
190	Dynamic changes in plasma proinsulin/insulin ratio during insulin secretion influence correlation between radioimmunoassay (RIA) and IMX measurements of insulin. Clinica Chimica Acta, 1999, 284, 1-13.	0.5	4
191	Letter re: Limited Accuracy of Surrogates of Insulin Resistance during Puberty in Obese and Lean Children at Risk for Altered Glucoregulation. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4418-4419.	1.8	4
192	Distinct Mechanisms for Globular Adiponectin That Integrate Vascular and Metabolic Actions of Insulin to Help Maintain Coordinated Cardiovascular and Glucose Homeostasis. Circulation Research, 2013, 112, 1205-1207.	2.0	4
193	Man shall not live by bread alone. Nutrition, 2015, 31, 244-247.	1.1	1
194	Transgenic mice with ectopic expression of constitutively active TLR4 in adipose tissues do not show impaired insulin sensitivity. Immunity, Inflammation and Disease, 2017, 5, 526-540.	1.3	1
195	Insulin Action and Endothelial Function. , 2008, , 107-135.		1
196	Predicted effects of hemoglobin A1c assay precision on a patient population distribution of serial hemoglobin A1c difference values. Clinica Chimica Acta, 2007, 378, 201-205.	0.5	0
197	Letter by Koh and Quon Regarding Article, "Evidence Mandating Earlier and More Aggressive Treatment of Hypercholesterolemiaâ€: Circulation, 2009, 119, e376; author reply e377.	1.6	0
198	Response to Comment on Sarkar et al. Exenatide Treatment for 6 Months Improves Insulin Sensitivity in Adults With Type 1 Diabetes. Diabetes Care 2014;37:666–670. Diabetes Care, 2014, 37, e219-e220.	4.3	0

#	Article	IF	CITATIONS
199	Insulin and Insulin-Like Growth Factor-1 Receptors and Signaling Pathways: Similarities and Differences. Growth Hormone, 2002, , 81-99.	0.2	0
200	Improved insulin sensitivity and reduced adiposity with aP2 driven TLR4 overexpression in transgenic mice. FASEB Journal, 2013, 27, 1083.6.	0.2	0
201	Reciprocal relationships between insulin resistance and endothelial dysfunction: insights from therapeutic interventions. Journal of Central South University (Medical Sciences), 2006, 31, 305-12.	0.1	Ο