
Andrea Haase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927794/publications.pdf Version: 2024-02-01

ANDREA HAASE

#	Article	IF	CITATIONS
1	How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact, 2022, 25, 100366.	2.4	23
2	Determining nanoform similarity via assessment of surface reactivity by abiotic and in vitro assays. NanoImpact, 2022, 26, 100390.	2.4	10
3	Integrated approaches to testing and assessment for grouping nanomaterials following dermal exposure. Nanotoxicology, 2022, 16, 310-332.	1.6	5
4	A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regulatory Toxicology and Pharmacology, 2021, 119, 104836.	1.3	11
5	An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. NanoImpact, 2021, 22, 100314.	2.4	31
6	Towards FAIR nanosafety data. Nature Nanotechnology, 2021, 16, 644-654.	15.6	61
7	Genotoxicity and Gene Expression in the Rat Lung Tissue following Instillation and Inhalation of Different Variants of Amorphous Silica Nanomaterials (aSiO2 NM). Nanomaterials, 2021, 11, 1502.	1.9	11
8	Comprehensive framework for human health risk assessment of nanopesticides. Nature Nanotechnology, 2021, 16, 955-964.	15.6	48
9	Nanomaterials induce different levels of oxidative stress, depending on the used model system: Comparison of in vitro and in vivo effects. Science of the Total Environment, 2021, 801, 149538.	3.9	15
10	Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. Nanomaterials, 2021, 11, 2623.	1.9	19
11	A multi-omics approach reveals mechanisms of nanomaterial toxicity and structure–activity relationships in alveolar macrophages. Nanotoxicology, 2020, 14, 181-195.	1.6	24
12	The influence of shape and charge on protein corona composition in common gold nanostructures. Materials Science and Engineering C, 2020, 117, 111270.	3.8	29
13	A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today, 2020, 35, 100941.	6.2	80
14	Investigating ion-release from nanocomposites in food simulant solutions: Case studies contrasting kaolin, CaCO3 and Cu-phthalocyanine. Food Packaging and Shelf Life, 2020, 26, 100560.	3.3	1
15	Thermodynamic Parameters at Bio–Nano Interface and Nanomaterial Toxicity: A Case Study on BSA Interaction with ZnO, SiO ₂ , and TiO ₂ . Chemical Research in Toxicology, 2020, 33, 2054-2071.	1.7	26
16	Nanomaterial categorization by surface reactivity: A case study comparing 35 materials with four different test methods. NanoImpact, 2020, 19, 100234.	2.4	25
17	Metabolomics profiling to investigate nanomaterial toxicity <i>inÂvitro</i> and <i>inÂvivo</i> . Nanotoxicology, 2020, 14, 807-826.	1.6	24
18	Recursive feature elimination in random forest classification supports nanomaterial grouping. NanoImpact, 2019, 15, 100179.	2.4	64

Andrea Haase

#	Article	IF	CITATIONS
19	An in-depth multi-omics analysis in RLE-6TN rat alveolar epithelial cells allows for nanomaterial categorization. Particle and Fibre Toxicology, 2019, 16, 38.	2.8	26
20	Mass Cytometry Enabling Absolute and Fast Quantification of Silver Nanoparticle Uptake at the Single Cell Level. Analytical Chemistry, 2019, 91, 11514-11519.	3.2	16
21	<p>Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake</p> . International Journal of Nanomedicine, 2019, Volume 14, 7861-7878.	3.3	37
22	Nanomaterial grouping: Existing approaches and future recommendations. NanoImpact, 2019, 16, 100182.	2.4	42
23	The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale, 2019, 11, 17637-17654.	2.8	38
24	In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials. Methods in Molecular Biology, 2019, 1894, 83-122.	0.4	31
25	Nanomaterials: certain aspects of application, risk assessment and risk communication. Archives of Toxicology, 2018, 92, 121-141.	1.9	109
26	Nanomaterial exposures for worker, consumer and the general public. NanoImpact, 2018, 10, 11-25.	2.4	68
27	Decision tree models to classify nanomaterials according to the <i>DF4nanoGrouping</i> scheme. Nanotoxicology, 2018, 12, 1-17.	1.6	71
28	Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact, 2018, 9, 42-50.	2.4	47
29	A guide to nanosafety testing: Considerations on cytotoxicity testing in different cell models. NanoImpact, 2018, 10, 1-10.	2.4	25
30	Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode. Journal of Analytical Atomic Spectrometry, 2018, 33, 1256-1263.	1.6	34
31	CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology. Nanotoxicology, 2017, 11, 839-845.	1.6	15
32	Genotoxicity testing of different surface-functionalized SiO2, ZrO2 and silver nanomaterials in 3D human bronchial models. Archives of Toxicology, 2017, 91, 3991-4007.	1.9	30
33	Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view. Journal of Nanobiotechnology, 2017, 15, 21.	4.2	31
34	The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 2001-2019.	3.3	45
35	Systems Biology to Support Nanomaterial Grouping. Advances in Experimental Medicine and Biology, 2017, 947, 143-171.	0.8	13
36	Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. Journal of Nanobiotechnology, 2016, 14, 50.	4.2	82

Andrea Haase

#	Article	IF	CITATIONS
37	Genotoxicity of nanomaterials in vitro: treasure or trash?. Archives of Toxicology, 2016, 90, 2827-2830.	1.9	6
38	Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity. Nanotoxicology, 2016, 10, 970-980.	1.6	55
39	A redox proteomics approach to investigate the mode of action of nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 24-29.	1.3	17
40	Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Particle and Fibre Toxicology, 2015, 12, 36.	2.8	49
41	Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. Journal of Nanobiotechnology, 2014, 12, 59.	4.2	73
42	Nanoparticle Surface Characterization and Clustering through Concentration-Dependent Surface Adsorption Modeling. ACS Nano, 2014, 8, 9446-9456.	7.3	31
43	Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials, 2013, 6, 2295-2350.	1.3	849
44	Risk assessment of nanomaterials in cosmetics: a European union perspective. Archives of Toxicology, 2012, 86, 1641-1646.	1.9	32
45	Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses. Toxicological Sciences, 2012, 126, 457-468.	1.4	206
46	Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses. ACS Nano, 2011, 5, 3059-3068.	7.3	91
47	Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN). Nanoscale, 2011, 3, 5168.	2.8	11