Dmitri Simberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927717/publications.pdf

Version: 2024-02-01

236925 149698 3,179 61 25 citations h-index papers

56 g-index 64 64 64 5012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly aminated iron oxide nanoworms for simultaneous manufacturing and labeling of chimeric antigen receptor T cells. Journal of Magnetism and Magnetic Materials, 2022, 541, 168480.	2.3	3
2	PEGylated Liposomes Accumulate in the Areas Relevant to Skin Toxicities ⟨i⟩via⟨/i⟩ Passive Extravasation across "Leaky―Endothelium. ACS Nano, 2022, 16, 6349-6358.	14.6	7
3	Critical issues and pitfalls in serum and plasma handling for complement analysis in nanomedicine and bionanotechnology. Nano Today, 2022, 44, 101479.	11.9	10
4	Pro-inflammatory concerns with lipid nanoparticles. Molecular Therapy, 2022, 30, 2109-2110.	8.2	16
5	Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like―Nanoparticles. ACS Nano, 2022, , .	14.6	7
6	Indocarbocyanine nanoparticles extravasate and distribute better than liposomes in brain tumors. Journal of Controlled Release, 2022, 349, 413-424.	9.9	2
7	Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Research, 2021, 81, 1189-1200.	0.9	31
8	Lipid nanoparticle formulation of niclosamide (nano NCM) effectively inhibits SARS-CoV-2 replication in vitro. Precision Nanomedicine, 2021, 4, 724-737.	0.8	11
9	Targeted Intracellular Delivery of Trastuzumab Using Designer Phage Lambda Nanoparticles Alters Cellular Programs in Human Breast Cancer Cells. ACS Nano, 2021, 15, 11789-11805.	14.6	18
10	Liposomal Extravasation and Accumulation in Tumors as Studied by Fluorescence Microscopy and Imaging Depend on the Fluorescent Label. ACS Nano, 2021, 15, 11880-11890.	14.6	15
11	Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking. Nature Communications, 2021, 12, 4858.	12.8	14
12	Complement opsonization of nanoparticles: Differences between humans and preclinical species. Journal of Controlled Release, 2021, 338, 548-556.	9.9	20
13	Delivery of a model lipophilic membrane cargo to bone marrow via cell-derived microparticles. Journal of Controlled Release, 2020, 326, 324-334.	9.9	4
14	C2 IgM Natural Antibody Enhances Inflammation and Its Use in the Recombinant Single Chain Antibody-Fused Complement Inhibitor C2-Crry to Target Therapeutics to Joints Attenuates Arthritis in Mice. Frontiers in Immunology, 2020, 11, 575154.	4.8	4
15	Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Advanced Drug Delivery Reviews, 2020, 157, 83-95.	13.7	39
16	Complement Inhibitors Block Complement C3 Opsonization and Improve Targeting Selectivity of Nanoparticles in Blood. Bioconjugate Chemistry, 2020, 31, 1844-1856.	3.6	11
17	Tuning the Engines of Nanomedicine. Molecular Therapy, 2020, 28, 693-694.	8.2	4
18	Complement Activation by Nanomaterials. Molecular and Integrative Toxicology, 2020, , 83-98.	0.5	3

#	Article	IF	CITATIONS
19	Establishing In Situ Closed Circuit Perfusion of Lower Abdominal Organs and Hind Limbs in Mice. Journal of Visualized Experiments, 2020, , .	0.3	0
20	Feraheme (Ferumoxytol) Is Recognized by Proinflammatory and Anti-inflammatory Macrophages via Scavenger Receptor Type AI/II. Molecular Pharmaceutics, 2019, 16, 4274-4281.	4.6	23
21	Evaluation of Targeting Efficiency of Joints with Anticollagen II Antibodies. Molecular Pharmaceutics, 2019, 16, 2445-2451.	4.6	8
22	Clickable Methyltetrazine-Indocarbocyanine Lipids: A Multicolor Tool Kit for Efficient Modifications of Cell Membranes. Bioconjugate Chemistry, 2019, 30, 2106-2114.	3.6	3
23	Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. Journal of Controlled Release, 2019, 302, 181-189.	9.9	24
24	The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 581-592.	2.5	47
25	Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumours. Journal of Drug Targeting, 2019, 27, 690-698.	4.4	15
26	Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nature Nanotechnology, 2019, 14, 260-268.	31.5	204
27	Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials, 2018, 161, 57-68.	11.4	11
28	Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Colloids and Surfaces B: Biointerfaces, 2018, 161, 200-209.	5.0	15
29	Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS Nano, 2018, 12, 12523-12532.	14.6	8
30	Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nature Nanotechnology, 2018, 13, 1100-1108.	31.5	130
31	Translational gaps in animal models of human infusion reactions to nanomedicines. Nanomedicine, 2018, 13, 973-975.	3.3	23
32	C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano, 2018, 12, 5834-5847.	14.6	86
33	Discrepancies in the in vitro and in vivo role of scavenger receptors in clearance of nanoparticles by Kupffer cells. Precision Nanomedicine, $2018, 1, 76-84$.	0.8	3
34	Longitudinal monitoring of skin accumulation of nanocarriers and biologicals with fiber optic near infrared fluorescence spectroscopy (FONIRS). Journal of Controlled Release, 2017, 247, 167-174.	9.9	9
35	Cell-penetrating peptide CGKRK mediates efficient and widespread targeting of bladder mucosa following focal injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1925-1932.	3.3	21
36	Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nature Nanotechnology, 2017, 12, 387-393.	31.5	411

3

#	Article	IF	Citations
37	Variability of Complement Response toward Preclinical and Clinical Nanocarriers in the General Population. Bioconjugate Chemistry, 2017, 28, 2747-2755.	3.6	35
38	Revealing Dynamics of Accumulation of Systemically Injected Liposomes in the Skin by Intravital Microscopy. ACS Nano, 2017, 11, 11584-11593.	14.6	21
39	Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice. Molecular Immunology, 2017, 90, 273-279.	2.2	5
40	Watching the gorilla and questioning delivery dogma. Journal of Controlled Release, 2017, 262, 87-90.	9.9	23
41	In Vitro and In Vivo Differences in Murine Third Complement Component (C3) Opsonization and Macrophage/Leukocyte Responses to Antibody-Functionalized Iron Oxide Nanoworms. Frontiers in Immunology, 2017, 8, 151.	4.8	40
42	Activation of Human Complement System by Dextran-Coated Iron Oxide Nanoparticles Is Not Affected by Dextran/Fe Ratio, Hydroxyl Modifications, and Crosslinking. Frontiers in Immunology, 2016, 7, 418.	4.8	43
43	Iron oxide nanoparticles and the mechanisms of immune recognition of nanomedicines. Nanomedicine, 2016, 11, 741-743.	3.3	7
44	Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake. ACS Nano, 2015, 9, 10758-10768.	14.6	82
45	Opening Windows into Tumors. ACS Nano, 2015, 9, 8647-8650.	14.6	9
46	Characteristics of liposomal encapsulation of an archetypal multi-kinase inhibitor in terms of antitumor activity and avoidance of systemic toxicity Journal of Clinical Oncology, 2015, 33, e13589-e13589.	1.6	0
47	High-Relaxivity Superparamagnetic Iron Oxide Nanoworms with Decreased Immune Recognition and Long-Circulating Properties. ACS Nano, 2014, 8, 12437-12449.	14.6	58
48	Distearoyl Anchorâ€Painted Erythrocytes with Prolonged Ligand Retention and Circulation Properties In Vivo. Advanced Healthcare Materials, 2014, 3, 142-148.	7.6	39
49	Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Particle and Fibre Toxicology, 2014, 11, 64.	6.2	79
50	Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes. Journal of Controlled Release, 2014, 183, 146-153.	9.9	45
51	Binding and isolation of tumor cells in biological media with perfluorocarbon microbubbles. Methods, 2013, 64, 102-107.	3.8	8
52	Direct Recognition of Superparamagnetic Nanocrystals by Macrophage Scavenger Receptor SR-Al. ACS Nano, 2013, 7, 4289-4298.	14.6	63
53	Isolation of Rare Tumor Cells from Blood Cells with Buoyant Immuno-Microbubbles. PLoS ONE, 2013, 8, e58017.	2.5	33
54	Role of Carbohydrate Receptors in the Macrophage Uptake of Dextran-Coated Iron Oxide Nanoparticles. Advances in Experimental Medicine and Biology, 2012, 733, 115-123.	1.6	45

#	Article	IF	CITATION
55	Different Effect of Hydrogelation on Antifouling and Circulation Properties of Dextran–Iron Oxide Nanoparticles. Molecular Pharmaceutics, 2012, 9, 539-545.	4.6	33
56	Recognition of Dextran–Superparamagnetic Iron Oxide Nanoparticle Conjugates (Feridex) via Macrophage Scavenger Receptor Charged Domains. Bioconjugate Chemistry, 2012, 23, 1003-1009.	3.6	59
57	Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 343-357.	5.0	299
58	Contact activation of kallikrein–kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. Journal of Controlled Release, 2009, 140, 301-305.	9.9	41
59	Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials, 2009, 30, 3926-3933.	11.4	148
60	Targeting of perfluorocarbon microbubbles to selective populations of circulating blood cells. Journal of Drug Targeting, 2009, 17, 392-398.	4.4	15
61	Biomimetic amplification of nanoparticle homing to tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 932-936.	7.1	434