
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dyeâ€Incorporated Polynaphthalenediimide Acceptor for Additiveâ€Free Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4580-4584.	7.2	114
2	Hole transport layers for organic solar cells: recent progress and prospects. Journal of Materials Chemistry A, 2020, 8, 11478-11492.	5.2	99
3	Alcohol-Soluble n-Type Conjugated Polyelectrolyte as Electron Transport Layer for Polymer Solar Cells. Macromolecules, 2015, 48, 5578-5586.	2.2	97
4	Introducing Fluorine and Sulfur Atoms into Quinoxaline-Based p-type Polymers To Gradually Improve the Performance of Fullerene-Free Organic Solar Cells. ACS Macro Letters, 2019, 8, 743-748.	2.3	83
5	Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chemical Communications, 2016, 52, 5674-5677.	2.2	77
6	Guest-oriented non-fullerene acceptors for ternary organic solar cells with over 16.0% and 22.7% efficiencies under one-sun and indoor light. Nano Energy, 2020, 75, 104896.	8.2	72
7	A Terminally Tetrafluorinated Nonfullerene Acceptor for Wellâ€Performing Alloy Ternary Solar Cells. Advanced Functional Materials, 2019, 29, 1805872.	7.8	70
8	Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template. ACS Applied Materials & Interfaces, 2017, 9, 26468-26475.	4.0	69
9	Nonhalogen Solventâ€Processed Asymmetric Wideâ€Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency. Advanced Functional Materials, 2018, 28, 1706517.	7.8	65
10	Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells. Chemical Communications, 2018, 54, 471-474.	2.2	61
11	Fluorobenzotriazole (FTAZ)â€Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Advanced Functional Materials, 2019, 29, 1808828.	7.8	61
12	Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chemistry of Materials, 2013, 25, 897-904.	3.2	57
13	Triple Dipole Effect from Selfâ€Assembled Smallâ€Molecules for High Performance Organic Photovoltaics. Advanced Materials, 2016, 28, 4852-4860.	11.1	55
14	Universal and Versatile MoO ₃ -Based Hole Transport Layers for Efficient and Stable Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9930-9938.	1.5	53
15	Novel Narrow Bandgap Terpolymer Donors Enables Record Performance for Semitransparent Organic Solar Cells Based on Allâ€Narrow Bandgap Semiconductors. Advanced Functional Materials, 2022, 32, .	7.8	52
16	Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 1018-1027.	2.7	51
17	Room temperature processed polymers for high-efficient polymer solar cells with power conversion efficiency over 9%. Nano Energy, 2017, 37, 32-39.	8.2	50
18	Counterion induced facile self-doping and tunable interfacial dipoles of small molecular electrolytes for efficient polymer solar cells. Nano Energy, 2016, 27, 492-498.	8.2	48

#	Article	IF	CITATIONS
19	Diketopyrrolopyrrole-based conjugated polymers as additives to optimize morphology for polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2016, 34, 491-504.	2.0	47
20	Alkylsilyl Functionalized Copolymer Donor for Annealingâ€Free High Performance Solar Cells with over 11% Efficiency: Crystallinity Induced Small Driving Force. Advanced Functional Materials, 2018, 28, 1800606.	7.8	47
21	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	10.2	47
22	Low Work-function Poly(3,4-ethylenedioxylenethiophene): Poly(styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells. Scientific Reports, 2015, 5, 12839.	1.6	44
23	Photovoltaic performance enhancement of P3HT/PCBM solar cells driven by incorporation of conjugated liquid crystalline rod-coil block copolymers. Journal of Materials Chemistry C, 2014, 2, 3835-3845.	2.7	43
24	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 19053-19057.	7.2	43
25	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
26	Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors. Journal of Materials Chemistry A, 2020, 8, 23096-23122.	5.2	42
27	Optimization of the Power Conversion Efficiency of Room Temperatureâ€Fabricated Polymer Solar Cells Utilizing Solution Processed Tungsten Oxide and Conjugated Polyelectrolyte as Electrode Interlayer. Advanced Functional Materials, 2014, 24, 3986-3995.	7.8	41
28	Fluorinated Reduced Graphene Oxide as an Efficient Hole-Transport Layer for Efficient and Stable Polymer Solar Cells. ACS Omega, 2017, 2, 2010-2016.	1.6	41
29	Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer. ACS Applied Materials & Interfaces, 2015, 7, 19024-19033.	4.0	39
30	n-Type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 13807-13816.	5.2	39
31	A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chemical Communications, 2018, 54, 563-566.	2.2	39
32	Vertical Distribution to Optimize Active Layer Morphology for Efficient All-Polymer Solar Cells by J71 as a Compatibilizer. Macromolecules, 2019, 52, 4359-4369.	2.2	38
33	In situ polymerization of ethylenedioxythiophene from sulfonated carbon nanotube templates: toward high efficiency ITO-free solar cells. Journal of Materials Chemistry A, 2016, 4, 6645-6652.	5.2	37
34	Non-halogenated solvent-processed single-junction polymer solar cells with 9.91% efficiency and improved photostability. Nano Energy, 2017, 41, 27-34.	8.2	37
35	Crystallization and conformation engineering of solution-processed polymer transparent electrodes with high conductivity. Journal of Materials Chemistry C, 2017, 5, 382-389.	2.7	36
36	Regulation of the Polar Groups in n-Type Conjugated Polyelectrolytes as Electron Transfer Layer for Inverted Polymer Solar Cells. Macromolecules, 2018, 51, 8197-8204.	2.2	36

#	Article	IF	CITATIONS
37	Free Mesogen Assisted Assembly of the Star-shaped Liquid-crystalline Copolymer/Polyethylene Oxide Solid Electrolytes for Lithium Ion Batteries. Electrochimica Acta, 2014, 118, 33-40.	2.6	35
38	Narrow band-gap materials with overlapping absorption simultaneously increase the open circuit voltage and average visible transmittance of semitransparent organic solar cells. Journal of Materials Chemistry A, 2021, 9, 5711-5719.	5.2	34
39	Interface-induced face-on orientation of the active layer by self-assembled diblock conjugated polyelectrolytes for efficient organic photovoltaic cells. Journal of Materials Chemistry A, 2016, 4, 18478-18489.	5.2	33
40	N-type Self-Doping of Fluorinate Conjugated Polyelectrolytes for Polymer Solar Cells: Modulation of Dipole, Morphology, and Conductivity. ACS Applied Materials & Interfaces, 2017, 9, 1145-1153.	4.0	33
41	N-Type Self-Doped Hyperbranched Conjugated Polyelectrolyte as Electron Transport Layer for Efficient Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 50187-50196.	4.0	33
42	Polyfluorene Electrolytes Interfacial Layer for Efficient Polymer Solar Cells: Controllably Interfacial Dipoles by Regulation of Polar Groups. ACS Applied Materials & Interfaces, 2016, 8, 9821-9828.	4.0	32
43	Structural similarity induced improvement in the performance of organic solar cells based on novel terpolymer donors. Journal of Materials Chemistry A, 2021, 9, 9238-9247.	5.2	32
44	Random copolymerization realized high efficient polymer solar cells with a record fill factor near 80%. Nano Energy, 2019, 61, 228-235.	8.2	31
45	Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. Science China Chemistry, 2022, 65, 182-189.	4.2	31
46	Rollâ€ŧoâ€Roll Production of Graphene Hybrid Electrodes for Highâ€Efficiency, Flexible Organic Photoelectronics. Advanced Materials Interfaces, 2015, 2, 1500445.	1.9	29
47	Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells. Journal of Materials Chemistry A, 2017, 5, 14689-14696.	5.2	29
48	Ferroelectric Polymer Drives Performance Enhancement of Nonâ€fullerene Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
49	In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16078-16085.	4.0	28
50	N-Type Alcohol-Soluble Small Molecules as an Interfacial Layer for Efficient and Stable Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 25887-25897.	1.5	28
51	Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Advances, 2017, 7, 22728-22734.	1.7	27
52	Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small, 2022, 18, e2200679.	5.2	25
53	Photovoltaics of donor–acceptor polymers based on benzodithiophene with lateral thiophenyl and fluorinated benzothiadiazole. Journal of Polymer Science Part A, 2013, 51, 1506-1511.	2.5	23
54	Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells. RSC Advances, 2014, 4, 3627-3632.	1.7	23

#	Article	IF	CITATIONS
55	Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. RSC Advances, 2015, 5, 49182-49187.	1.7	23
56	Fluorine-induced self-doping and spatial conformation in alcohol-soluble interlayers for highly-efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 423-433.	5.2	23
57	Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells. Journal of Energy Chemistry, 2021, 53, 63-68.	7.1	23
58	Luminescent mesogen jacketed poly(1â€alkyne) bearing lateral terphenyl with hexyloxy tail. Journal of Polymer Science Part A, 2010, 48, 5679-5692.	2.5	22
59	Novel Copolymers Based Tetrafluorobenzene and Difluorobenzothiadiazole for Organic Solar Cells with Prominent Open Circuit Voltage and Stability. Macromolecular Rapid Communications, 2017, 38, 1600556.	2.0	22
60	The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers, 2020, 4, 1507-1518.	3.2	22
61	The effect of photocrosslinkable groups on thermal stability of bulk heterojunction solar cells based on donor-acceptor-conjugated polymers. Journal of Polymer Science Part A, 2013, 51, 4156-4166.	2.5	21
62	Sulfonate Poly(aryl ether sulfone)-Modified PEDOT:PSS as Hole Transport Layer and Transparent Electrode for High Performance Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 1943-1952.	1.5	21
63	Asymmetric Wideâ€Bandgap Polymers Simultaneously Improve the Openâ€Circuit Voltage and Shortâ€Circuit Current for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1800906.	2.0	21
64	Printable Hole Transport Layer for 1.0 cm ² Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 52028-52037.	4.0	21
65	A novel planar Dâ€A alternating copolymer with Dâ€A integrated structures exhibiting Hâ€aggregate behaviors for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 624-634.	2.5	20
66	Double Acceptor Block-Containing Copolymers with Deep HOMO Levels for Organic Solar Cells: Adjusting Carboxylate Substituent Position for Planarity. ACS Applied Materials & Interfaces, 2019, 11, 15853-15860.	4.0	20
67	Non-halogenated-solvent-processed highly efficient organic solar cells with a record open circuit voltage enabled by noncovalently locked novel polymer donors. Journal of Materials Chemistry A, 2019, 7, 27394-27402.	5.2	20
68	A Novel Thiophene Derivativeâ€based Conjugated Polymer for Polymer Solar Cells with High Openâ€circuit Voltage. Chinese Journal of Chemistry, 2012, 30, 2219-2224.	2.6	19
69	Versatile MoS2 Nanosheets in ITO-Free and Semi-transparent Polymer Power-generating Glass. Scientific Reports, 2015, 5, 12161.	1.6	19
70	Liquid-crystalline ionic liquids modified conductive polymers as a transparent electrode for indium-free polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 22316-22324.	5.2	19
71	Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chinese Chemical Letters, 2019, 30, 1161-1167.	4.8	19
72	Reducing Energy Loss and Morphology Optimization Manipulated by Molecular Geometry Engineering for Heteroâ€junction Organic Solar Cells. Chinese Journal of Chemistry, 2020, 38, 1553-1559.	2.6	19

#	Article	IF	CITATIONS
73	Integration of light-harvesting complexes into the polymer bulk heterojunction P3HT/PCBM device for efficient photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 7342.	6.7	18
74	One-dimensional graphene nanoribbons hybridized with carbon nanotubes as cathode and anode interfacial layers for high performance solar cells. RSC Advances, 2015, 5, 49614-49622.	1.7	18
75	Amphiphilic fullerenes modified 1D ZnO arrayed nanorods–2D graphene hybrids as cathode buffer layers for inverted polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 10890-10899.	5.2	18
76	3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12175-12182.	1.3	18
77	Nanostructuring compatibilizers of block copolymers for organic photovoltaics. Polymer International, 2014, 63, 593-606.	1.6	17
78	A novel alkylsilyl-fused copolymer-based non-fullerene solar cell with over 12% efficiency. Journal of Materials Chemistry A, 2019, 7, 4145-4152.	5.2	17
79	Improvement in the Efficiency of Alkylsilyl Functionalized Copolymer for Polymer Solar Cells: Faceâ€⊙n Orientation Enhanced by Random Copolymerization. Solar Rrl, 2019, 3, 1900122.	3.1	17
80	A novel type of optically active helical liquid crystalline polymers: Synthesis and characterization of poly(<i>p</i> â€phenylene)s containing terphenyl mesogen with different terminal groups. Journal of Polymer Science Part A, 2009, 47, 4723-4735.	2.5	16
81	Can morphology tailoring based on functionalized fullerene nanostructures improve the performance of organic solar cells?. Journal of Materials Chemistry, 2012, 22, 18768.	6.7	16
82	Mesogen-controlled ion channel of star-shaped hard-soft block copolymers for solid-state lithium-ion battery. Journal of Polymer Science Part A, 2013, 51, 4341-4350.	2.5	16
83	High-Performance Polymer Solar Cells Realized by Regulating the Surface Properties of PEDOT:PSS Interlayer from Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 27018-27025.	4.0	16
84	Wide Band Gap Photovoltaic Polymer Based on Pyrrolo[3,4- <i>f</i>]benzotriazole-5,7-dione (TzBI) with Ultrahigh <i>V</i> _{OC} Beyond 1.25 V. Journal of Physical Chemistry C, 2020, 124, 19492-19498.	1.5	16
85	Diketopyrrolopyrroleâ€based liquid crystalline conjugated donor–acceptor copolymers with reduced band gap for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 258-266.	2.5	15
86	Self-assembled buffer layer from conjugated diblock copolymers with ethyleneoxide side chains for high efficiency polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 8054-8064.	2.7	15
87	Solution-processed small molecules based on benzodithiophene and difluorobenzothiadiazole for inverted organic solar cells. Polymer Chemistry, 2015, 6, 7726-7736.	1.9	15
88	A homogeneous ethanedithiol doped ZnO electron transporting layer for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 8738-8744.	2.7	15
89	A 1 â€A 2 Type Wide Bandgap Polymers for Highâ€Performance Polymer Solar Cells: Energy Loss and Morphology. Solar Rrl, 2019, 3, 1800291.	3.1	15
90	"Double-Acceptor-Type―Random Conjugated Terpolymer Donors for Additive-Free Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20741-20749.	4.0	15

#	Article	IF	CITATIONS
91	Inter-crosslinking through both donor and acceptor with unsaturated bonds for highly efficient and stable organic solar cells. Polymer Chemistry, 2013, 4, 5637.	1.9	14
92	Enhanced performance for organic bulk heterojunction solar cells by cooperative assembly of ter(ethylene oxide) pendants. Polymer Chemistry, 2014, 5, 4480-4487.	1.9	14
93	Multi-Chlorine-Substituted Self-Assembled Molecules As Anode Interlayers: Tuning Surface Properties and Humidity Stability for Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2017, 9, 9204-9212.	4.0	14
94	Self-doped polymer with fluorinated phenylene as hole transport layer for efficient polymer solar cells. Organic Electronics, 2018, 61, 207-214.	1.4	14
95	Rational Regulation of the Molecular Aggregation Enables A Facile Bladeâ€Coating Process of Largeâ€area Allâ€Polymer Solar Cells with Record Efficiency. Small, 2022, 18, e2200734.	5.2	14
96	Layer-by-layer and non-halogenated solvent processing of benzodithiophene-free simple polymer donors for organic solar cells. Chemical Engineering Journal, 2022, 443, 136515.	6.6	14
97	Understanding the mechanism of poly(3-hexylthiophene)-b-poly(4-vinylpyridine) as a nanostructuring compatibilizer for improving the performance of poly(3-hexylthiophene)/ZnO-based hybrid solar cells. Journal of Materials Chemistry A, 2013, 1, 10881.	5.2	13
98	In Situ Fabricating One-Dimensional Donor–Acceptor Core–Shell Hybrid Nanobeams Network Driven by Self-Assembly of Diblock Copolythiophenes. Macromolecules, 2014, 47, 1757-1767.	2.2	13
99	Amphiphilic fullerene derivative as effective interfacial layer for inverted polymer solar cells. Organic Electronics, 2016, 37, 35-41.	1.4	13
100	Bithiazole-based copolymer with deep HOMO level and noncovalent conformational lock for organic photovoltaics. Organic Electronics, 2019, 64, 110-116.	1.4	13
101	Recent Developments of nâ€Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. ChemSusChem, 2022, 15, .	3.6	13
102	Enhanced Photoluminescence, Mesomorphism and Conformation of Liquidâ€Crystalline Conjugated Polymers with Terphenyl Mesogen Pendants. Macromolecular Chemistry and Physics, 2011, 212, 24-41.	1.1	12
103	Solution processed and self-assembled polymerizable fullerenes/metal oxide as an interlayer for high efficient inverted polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 10282-10290.	2.7	12
104	Novel photovoltaic donor 1–acceptor–donor 2–acceptor terpolymers with tunable energy levels based on a difluorinated benzothiadiazole acceptor. RSC Advances, 2015, 5, 12087-12093.	1.7	12
105	Design of amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene)-based gel electrolytes for high-performance lithium-ion batteries. Ionics, 2016, 22, 1311-1318.	1.2	12
106	Optimization of perovskite by 3D twisted diketopyrrolopyrrole for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 1179-1184.	3.2	12
107	Novel efficient accptor1-acceptor2 type copolymer donors: Vinyl induced planar geometry and high performance organic solar cells. Chemical Engineering Journal, 2021, 419, 129532.	6.6	12
108	Oligomerâ€Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	12

#	Article	IF	CITATIONS
109	A Versatile Buffer Layer for Polymer Solar Cells: Rendering Surface Potential by Regulating Dipole. Advanced Functional Materials, 2015, 25, 3164-3171.	7.8	11
110	Postâ€Treatmentâ€Free Main Chain Donor and Side Chain Acceptor (Dâ€ <i>s</i> â€A) Copolymer for Efficient Nonfullerene Solar Cells with a Small Voltage Loss. Macromolecular Rapid Communications, 2018, 39, e1700706.	2.0	11
111	A rational comparison of the effects of halogen atoms incorporated into the polymer donors on the performance of polymer solar cells. Organic Electronics, 2019, 70, 86-92.	1.4	11
112	Novel High-Efficiency Polymer Acceptors via Random Ternary Copolymerization Engineering Enables All-Polymer Solar Cells with Excellent Performance and Stability. ACS Applied Materials & Interfaces, 2021, 13, 17892-17901.	4.0	11
113	Thickness-Insensitive Anode Interface Layer for High-Efficiency Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39844-39853.	4.0	11
114	Donor–acceptorâ€integrated conjugated polymers based on carbazole[3,4â€ <i>c</i> :5,6â€ <i>c</i>]bis[1,2,5]thiadiazole with tight π–π stacking for photovoltaics. Journal of Polymer Science Part A, 2013, 51, 565-574.	2.5	10
115	Novel phenanthrocarbazole based donor-acceptor random and alternating copolymers for photovoltaics. Journal of Polymer Science Part A, 2013, 51, 4885-4893.	2.5	10
116	Crystallization and Optical Compensation by Fluorinated Rod Liquid Crystals for Ternary Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 18462-18472.	1.5	10
117	Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells. Angewandte Chemie, 2018, 130, 4670-4674.	1.6	10
118	Morphological optimization by rational matching of the donor and acceptor boosts the efficiency of alkylsilyl fused ring-based polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4847-4854.	5.2	10
119	Isomeric Effect of Wide Bandgap Polymer Donors with High Crystallinity to Achieve Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2020, 41, e2000454.	2.0	10
120	A novel AIE molecule as a hole transport layer enables efficient and stable perovskite solar cells. Chemical Communications, 2021, 57, 4015-4018.	2.2	10
121	Regulation of the Miscibility of the Active Layer by Random Terpolymer Acceptors to Realize High-Performance All-Polymer Solar Cells. ACS Applied Polymer Materials, 2021, 3, 1923-1931.	2.0	10
122	Photoluminescent, liquidâ€crystalline, and electrochemical properties of <i>para</i> â€phenyleneâ€based alternating conjugated copolymers. Journal of Polymer Science Part A, 2010, 48, 434-442.	2.5	9
123	Modulation of the molecular geometry of carbazolebis(thiadiazole)-based conjugated polymers for photovoltaic applications. Polymer Chemistry, 2013, 4, 2480.	1.9	9
124	Cooperative Assembly of Pyrene-Functionalized Donor/Acceptor Blend for Ordered Nanomorphology by Intermolecular Noncovalent π–π Interactions. ACS Applied Materials & Interfaces, 2014, 6, 8115-8123.	4.0	9
125	Alkylsilyl Fused Ringâ€Based Polymer Donor for Nonâ€Fullerene Solar Cells with Record Open Circuit Voltage and Energy Loss. Small, 2021, 17, e2104451.	5.2	9
126	Exploiting Novel Unfusedâ€Ring Acceptor for Efficient Organic Solar Cells with Record Openâ€Circuit Voltage and Fill Factor. ChemSusChem, 2022, 15, .	3.6	9

#	Article	IF	CITATIONS
127	Novel Donorâ€Acceptor Copolymers Based on Dithienosilole and Ketone Modified Thieno[3,4â€ <i>b</i>]thiophene for Photovoltaic Application. Chinese Journal of Chemistry, 2013, 31, 1455-1462.	2.6	8
128	Versatile Molybdenum Isopropoxide for Efficient Mesoporous Perovskite Solar Cells: Simultaneously Optimized Morphology and Interfacial Engineering. Journal of Physical Chemistry C, 2016, 120, 15089-15095.	1.5	8
129	Alcohol-soluble interfacial fluorenes for inverted polymer solar cells: sequence induced spatial conformation dipole moment. Physical Chemistry Chemical Physics, 2016, 18, 2219-2229.	1.3	8
130	Self-assembled diblock conjugated polyelectrolytes as electron transport layers for organic photovoltaics. RSC Advances, 2017, 7, 24345-24352.	1.7	8
131	Modulating Chlorination Position on Polymer Donors for Highly Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2100510.	3.1	8
132	Effects of substitution and terminal groups for liquid-crystallinity enhanced luminescence of disubstituted polyacetylenes carrying chromophoric terphenyl pendants. Science China Chemistry, 2010, 53, 1302-1315.	4.2	7
133	High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors and solar cells. Polymer Chemistry, 2015, 6, 7684-7692.	1.9	7
134	Thick polyfluorene-based polyelectrolytes realized by regulation of conjugated backbone as cathode interface layers for efficient polymer solar cells. Journal of Power Sources, 2019, 423, 26-33.	4.0	7
135	Introducing Porphyrin Units by Random Copolymerization Into NDI-Based Acceptor for All Polymer Solar Cells. Frontiers in Chemistry, 2020, 8, 310.	1.8	7
136	Thiophene with Oligoethylene Oxide Side Chain Enables Random Terpolymer Acceptor to Achieve Efficient Allâ€Polymer Solar Cells. ChemElectroChem, 2021, 8, 3936-3942.	1.7	7
137	Synthesis and properties of novel ferroelectric liquid crystalline polyacetylenes containing terphenyl mesogens with chiral groups. Journal of Thermal Analysis and Calorimetry, 2011, 105, 995-1006.	2.0	6
138	In Situ Photocatalytically Heterostructured ZnOAg Nanoparticle Composites as Effective Cathodeâ€Modifying Layers for Airâ€Processed Polymer Solar Cells. Chemistry - A European Journal, 2015, 21, 11899-11906.	1.7	6
139	Ternary thick active layer for efficient organic solar cells. Journal of Materials Science, 2018, 53, 8398-8408.	1.7	6
140	Self-assembly monolayers manipulate the power conversion processes in organic photovoltaics. Journal of Power Sources, 2019, 409, 66-75.	4.0	6
141	Over 70% Fill Factor of Allâ€Polymer Solar Cells Guided by the Law of Similarity and Intermiscibility. Solar Rrl, 2021, 5, 2100019.	3.1	6
142	Compositional engineering of metal-xanthate precursors toward (Bi _{1â^'<i>x</i>} Sb _{<i>x</i>} Scsub>2S ₃ (0 ≤i>x ≤0.05) film with enhanced room temperature thermoelectric performance. Journal of Materials Chemistry C, 2022, 10, 1718-1726.	^S 2.7	6
143	Quasi-three-dimensional self-doped conjugated polyelectrolytes based on a triphenylamine skeleton for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2022, 10, 1029-1038.	2.7	6
144	Vinylâ€addition type norbornene copolymer containing sulfonated biphenyl pendant groups for proton exchange membranes. Journal of Applied Polymer Science, 2013, 127, 2280-2289.	1.3	5

#	Article	IF	CITATIONS
145	Structure Evolution of Fluorinated Conjugated Polymers Based on Benzodithiophene and Benzothiadiazole for Photovoltaics. Journal of Physical Chemistry C, 2015, 119, 8038-8045.	1.5	5
146	Adjusting the Active Layer Morphology via an Amorphous Acceptor Solid Additive for Efficient and Stable Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2100532.	3.1	5
147	High Efficiency of Poly(3-hexylthiophene)/[6,6]-phenyl C61 Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells through Precrystallining of Poly(3-hexylthiophene) Based Layer. ACS Applied Materials & Interfaces, 2013, 5, 5986-5993.	4.0	4
148	Alternating terpolymers based on tunable Bi-donors with manipulating energy levels and molecular geometry. Chemical Research in Chinese Universities, 2017, 33, 305-311.	1.3	4
149	Random Copolymerization Strategy for Host Polymer Donor PM6 Enables Improved Efficiency Both in Binary and Ternary Organic Solar Cells. ChemSusChem, 2022, 15, .	3.6	4
150	Highly-efficient polymer solar cells realized by tailoring conjugated skeleton of alcohol-soluble conjugated electrolytes. Solar Energy Materials and Solar Cells, 2016, 157, 644-651.	3.0	3
151	Double acceptor block-based copolymers for efficient organic solar cells: side-chain and π-bridge engineered high open-circuit voltage and small driving force. Polymer Chemistry, 2019, 10, 6227-6235.	1.9	3
152	Ferroelectric Polymer Drives Performance Enhancement of Nonâ€fullerene Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3
153	Elastomers uploaded electrospun nanofibrous membrane as solid state polymer electrolytes for lithium-ion batteries. RSC Advances, 2015, 5, 82960-82967.	1.7	2
154	Room temperature and non-halogenated solvent processed terpolymers for high-efficient polymer solar cells. Dyes and Pigments, 2021, 186, 109023.	2.0	2
155	Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 19201-19205.	1.6	2
156	Novel polymer donors based on simple A1-ï€-A2 structure for non-halogen solvent-processed organic solar cells. Dyes and Pigments, 2021, 196, 109817.	2.0	2