Annalisa Allocca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927476/publications.pdf

Version: 2024-02-01

9786 5539 57,378 164 73 163 citations h-index g-index papers 165 165 165 16780 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
12	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
13	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
14	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
15	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
16	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
17	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, . GW190521: A Binary Black Hole Merger with a Total Mass of < mml:math	8.9	898

GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext>â€%</mml:mtext>â€%</mml:mtext>â€%</mml:mtext> â€%</mml:mtext> â€%</mml

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
20	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
21	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
22	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
23	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
24	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
25	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
26	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
27	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
28	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
29	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
30	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
31	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
32	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
33	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
34	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
35	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
36	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254

#	Article	IF	Citations
37	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
38	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
39	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
40	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
41	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
42	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
43	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
44	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
45	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
46	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
47	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
48	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
49	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
50	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
51	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
52	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
53	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
54	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119

#	Article	IF	Citations
55	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
56	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
57	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
58	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
59	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
60	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
61	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
62	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
63	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
64	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
65	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
66	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
67	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
68	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
69	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
70	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
71	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
72	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73

#	Article	IF	CITATIONS
73	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
74	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
7 5	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
76	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
77	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
78	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
79	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
80	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
81	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
82	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
83	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
84	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
85	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
86	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
87	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
88	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62
89	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
90	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60

#	Article	IF	Citations
91	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
92	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
93	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
94	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
95	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
96	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
97	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
98	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
99	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
100	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
101	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
102	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
103	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
104	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
105	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
106	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
107	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
108	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42

#	Article	IF	CITATIONS
109	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1	0.784314	rgBT /Overlo
110	Large and extremely low loss: the unique challenges of gravitational wave mirrors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, C85.	1.5	40
111	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
112	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
113	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters. 2019. 122. 061104.	7.8	36
114	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
115	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
116	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
117	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
118	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	33
119	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
120	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
121	Search for Gravitational Waves Associated with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math> -ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	7.8	32
122	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
123	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	5.1	32
124	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
125	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
126	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30

#	Article	IF	CITATIONS
127	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
128	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
129	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
130	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
131	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
132	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
133	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
134	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
135	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21
136	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
137	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
138	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
139	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
140	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
141	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
142	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGOâ \in TM s and Advanced Virgoâ \in TM s first three observing runs. Physical Review D, 2022, 105, .	4.7	18
143	Higher-order Laguerre-Gauss interferometry for gravitational-wave detectors with < i > inÂsitu < / i > mirror defects compensation. Physical Review D, 2015, 92, .	4.7	17
144	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17

#	Article	IF	Citations
145	Interferometer Sensing and Control for the Advanced Virgo Experiment in the O3 Scientific Run. Galaxies, 2020, 8, 85.	3.0	15
146	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
147	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
148	Research Facilities for Europe's Next Generation Gravitational-Wave Detector Einstein Telescope. Galaxies, 2022, 10, 65.	3.0	13
149	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
150	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11
151	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
152	Results of Measuring the Influence of Casimir Energy on Superconducting Phase Transitions. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2557-2565.	1.8	9
153	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
154	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
155	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
156	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
157	New algorithm for the Guided Lock technique for a high-Finesse optical cavity. Astroparticle Physics, 2020, 117, 102405.	4.3	6
158	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. European Physical Journal Plus, 2021, 136, 1.	2.6	5
159	Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. European Physical Journal Plus, 2021, 136, 1.	2.6	5
160	Determination of the light exposure on the photodiodes of a new instrumented baffle for the Virgo input mode cleaner end-mirror. Classical and Quantum Gravity, 2021, 38, 045002.	4.0	4
161	Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry–Perot Cavities. Galaxies, 2020, 8, 80.	3.0	3
162	Toward optomechanical parametric instability prediction in ground-based gravitational wave detectors. Applied Optics, 2021, 60, 8540.	1.8	2

#	Article	IF	CITATIONS
163	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
164	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo., 2016, 19, 1.		1