
Fangli Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/492744/publications.pdf Version: 2024-02-01

FANCULING

#	Article	lF	CITATIONS
1	Size effect in propane dehydrogenation on PtIn/Sn-SBA-15. Molecular Catalysis, 2022, 518, 112081.	2.0	3
2	Controlled reaction depth by metal (M=Fe, Ni, Mn and Ti) doped ceria in selective oxidation of ethane with carbon dioxide. Applied Catalysis A: General, 2022, 635, 118565.	4.3	8
3	Synergistic bimetallic CeNi/SiO2 for boosting the catalytic activity of levulinic acid hydrogenation in gas phase. Journal of Environmental Chemical Engineering, 2022, 10, 107760.	6.7	2
4	Toluene catalytic oxidation over the layered MOxâ^îî-MnO2 (MÂ=ÂPt, Ir, Ag) composites originated from the facile self-driving combustion method. Fuel, 2021, 283, 118888.	6.4	27
5	Oxidative dehydrogenation of ethane with carbon dioxide over silica molecular sieves supported chromium oxides: Pore size effect. Chinese Journal of Chemical Engineering, 2021, 34, 77-86.	3.5	5
6	Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones. Molecular Catalysis, 2021, 501, 111376.	2.0	7
7	Influence of support precursor on FeCe-TiO2 for selective catalytic reduction of NO with ammonia. Molecular Catalysis, 2021, 508, 111586.	2.0	5
8	Porous Silica Coated Ceria as a Switch in Tandem Oxidative Dehydrogenation and Dry Reforming of Ethane with CO 2. ChemCatChem, 2021, 13, 3501-3509.	3.7	4
9	Enhanced lattice oxygen activity on glow discharge plasma irradiated SrCr/SiO2 and the performance in oxidative dehydrogenation of ethane with CO2. Molecular Catalysis, 2021, 509, 111658.	2.0	2
10	The role of K in tuning oxidative dehydrogenation of ethane with CO2 to be selective toward ethylene. Advanced Composites and Hybrid Materials, 2021, 4, 793-805.	21.1	27
11	Enhanced low-temperature catalytic performance in CO2 hydrogenation over Mn-promoted NiMgAl catalysts derived from quaternary hydrotalcite-like compounds. International Journal of Hydrogen Energy, 2021, 46, 33107-33119.	7.1	17
12	Efficient activation of H2 on copper species immobilized by MCM-41 for selective hydrogenation of furfural at ambient pressure. Molecular Catalysis, 2021, 515, 111921.	2.0	5
13	Converting Poisonous Sulfate Species to an Active Promoter on TiO ₂ Predecorated MnO _{<i>x</i>} Catalysts for the NH ₃ -SCR Reaction. ACS Applied Materials & Interfaces, 2021, 13, 61237-61247.	8.0	16
14	High-performance CoxM3-xAlOy (M Ni, Mn) catalysts derived from microwave-assisted synthesis of hydrotalcite precursors for methane catalytic combustion. Catalysis Today, 2020, 347, 23-30.	4.4	9
15	Glycerol steam reforming for hydrogen production over bimetallic MNi/CNTs (M Co, Cu and Fe) catalysts. Catalysis Today, 2020, 355, 128-138.	4.4	16
16	Influence of hydrothermal treatment on structural property of NiZrAl mixed-metal oxides and on catalytic steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 22448-22458.	7.1	6
17	Synergetic Bimetallic NiCo/CNT Catalyst for Hydrogen Production by Glycerol Steam Reforming: Effects of Metal Species Distribution. Industrial & Engineering Chemistry Research, 2020, 59, 17259-17268.	3.7	18
18	Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural on a Ru(0) Center in Cooperation with a Co(II)/Co(III) Redox Pair over the One-Pot Synthesized Ru–Co Composites. Industrial & Engineering Chemistry Research, 2020, 59, 17200-17209.	3.7	31

Fangli Jing

#	Article	IF	CITATIONS
19	Hydrogen production through glycerol steam reforming over the NiCexAl catalysts. Renewable Energy, 2020, 158, 192-201.	8.9	27
20	Preparation of Highly Dispersed Nb ₂ O ₅ Supported Cobalt-Based Catalysts for the Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2020, 59, 17315-17327.	3.7	7
21	Effects of Dopants in PtSn/Mâ€5ilicaliteâ€1 on Structural Property and on Catalytic Propane Dehydrogenation Performance. ChemistrySelect, 2020, 5, 4175-4185.	1.5	13
22	Enhanced catalytic performances of in situ-assembled LaMnO3/Î^-MnO2 hetero-structures for toluene combustion. Catalysis Today, 2019, 327, 19-27.	4.4	42
23	Various Metals (Ce, In, La, and Fe) Promoted Pt/Sn-SBA-15 as Highly Stable Catalysts for Propane Dehydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 10804-10818.	3.7	33
24	Plasma assisted preparation of nickel-based catalysts supported on CeO2 with different morphologies for hydrogen production by glycerol steam reforming. Powder Technology, 2019, 354, 324-332.	4.2	21
25	Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming. Applied Catalysis B: Environmental, 2019, 249, 257-265.	20.2	80
26	Improved Catalytic Performance of Ethane Dehydrogenation in the Presence of CO ₂ over Zr-Promoted Cr/SiO ₂ . ACS Omega, 2019, 4, 22562-22573.	3.5	24
27	The role of Zr in NiZrAl oxides catalyst and the evaluation on steam reforming of glycerol for hydrogen product. Catalysis Today, 2019, 319, 229-238.	4.4	23
28	Effects of preparation methods on CoAlOx/CeO2 catalysts for methane catalytic combustion. Fuel, 2018, 225, 588-595.	6.4	46
29	Carbon Nanotubes Supported Nickel as the Highly Efficient Catalyst for Hydrogen Production through Glycerol Steam Reforming. ACS Sustainable Chemistry and Engineering, 2018, 6, 14403-14413.	6.7	31
30	Facile one-pot synthesized ordered mesoporous Mg-SBA-15 supported PtSn catalysts for propane dehydrogenation. Applied Catalysis A: General, 2017, 533, 17-27.	4.3	48
31	Layered Double Hydroxides Derived <scp>ZnOâ€Al₂O₃</scp> Supported Pdâ€Ag Catalysts for Selective Hydrogenation of Acetylene. Chinese Journal of Chemistry, 2017, 35, 1009-1015.	4.9	15
32	Experimental Study of Silver-Loaded Mesoporous Silica for the Separation of Ethylene and Ethane. Journal of Chemical & Engineering Data, 2017, 62, 2562-2569.	1.9	8
33	Highly effective self-propagating synthesis of CeO 2 -doped MnO 2 catalysts for toluene catalytic combustion. Catalysis Today, 2017, 297, 167-172.	4.4	72
34	Ordered mesoporous Sn-SBA-15 as support for Pt catalyst with enhanced performance in propane dehydrogenation. Chinese Journal of Catalysis, 2017, 38, 726-735.	14.0	38
35	Self-Propagated Flaming Synthesis of Highly Active Layered CuO-Î^MnO ₂ Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant. ACS Applied Materials & Interfaces, 2017, 9, 21798-21808.	8.0	91
36	Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study. Applied Surface Science, 2017, 410, 166-176.	6.1	104

Fangli Jing

#	Article	IF	CITATIONS
37	Nano-flowered Ce@MOR hybrids with modulated acid properties for the vapor-phase dehydration of 1,3-butanediol into butadiene. Green Chemistry, 2017, 19, 4610-4621.	9.0	18
38	Facile synthesis of CuMAl (M = Cr, Mn, Zn, and Co) with highly dispersed Cu and tailorable surface acidity for efficient 2-methylpyrazine synthesis. RSC Advances, 2017, 7, 48662-48669.	3.6	6
39	Alâ€doped SBAâ€15 Catalysts for Lowâ€ŧemperature Dehydration of 1,3â€Butanediol into Butadiene. ChemCatChem, 2017, 9, 258-262.	3.7	25
40	Improvement of catalytic stability for CO 2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides. Journal of Energy Chemistry, 2016, 25, 1078-1085.	12.9	48
41	CO 2 selective hydrogenation to synthetic natural gas (SNG) over four nano-sized Ni/ZrO 2 samples: ZrO 2 crystalline phase & treatment impact. Journal of Energy Chemistry, 2016, 25, 1070-1077.	12.9	26
42	Theoretical insight into the enhanced CH 4 desorption via H 2 O adsorption on different rank coal surfaces. Journal of Energy Chemistry, 2016, 25, 677-682.	12.9	30
43	Structural Evolution under Reaction Conditions of Supported (NH4)3HPMo11VO40 Catalysts for the Selective Oxidation of Isobutane. Catalysts, 2015, 5, 460-477.	3.5	13
44	Catalytic selective oxidation of isobutane over Cs _x (NH ₄) _{3â^x} HPMo ₁₁ VO ₄₀ mixed salts. Catalysis Science and Technology, 2014, 4, 2938.	4.1	28
45	Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. Journal of Catalysis, 2014, 309, 121-135.	6.2	75
46	Influences of pore size on production of 2-methylpyrazine over bifunctional CuO/ZnO/meso-SiO2 catalysts. Research on Chemical Intermediates, 2013, 39, 1301-1311.	2.7	2
47	Improvement of the catalytic performance of supported (NH4)3HPMo11VO40 catalysts in isobutane selective oxidation. Catalysis Today, 2013, 203, 32-39.	4.4	45
48	Catalytic synthesis of 2-methylpyrazine over Cr-promoted copper based catalyst via a cyclo-dehydrogenation reaction route. Journal of Chemical Sciences, 2010, 122, 621-630.	1.5	22
49	Nano-size MZnAl (M=Cu, Co, Ni) metal oxides obtained by combining hydrothermal synthesis with urea homogeneous precipitation procedures. Applied Clay Science, 2010, 48, 203-207.	5.2	37
50	Effects of potassium on MgO-supported Fe-Mn catalysts for the hydrogenation of carbon monoxide to light alkenes. Reaction Kinetics and Catalysis Letters, 2008, 94, 139-147.	0.6	2
51	Sustainable synthesis of vanillin through base-free selective oxidation using synergistic AgPd nanoparticles loaded on ZrO2. Catalysis Science and Technology, 0, , .	4.1	6
52	One-pot synthesis of finely-dispersed Au nanoparticles on ZnO hexagonal sheet for base-free aerobic oxidation of vanillyl alcohol. Catalysis Science and Technology, 0, , .	4.1	7