
Andreas Jürgens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tradeâ€off mitigation: a conceptual framework for understanding floral adaptation in multispecies interactions. Biological Reviews, 2021, 96, 2258-2280.	10.4	15
2	The role of middens in white rhino olfactory communication. Animal Behaviour, 2018, 140, 7-18.	1.9	23
3	Pollinator specialization in the enigmatic Rafflesia cantleyi : A true carrion flower with species-specific and sex-biased blow fly pollinators. Phytochemistry, 2018, 153, 120-128.	2.9	23
4	Pollination systems involving floral mimicry of fruit: aspects of their ecology and evolution. New Phytologist, 2018, 217, 74-81.	7.3	16
5	Dung odours signal sex, age, territorial and oestrous state in white rhinos. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162376.	2.6	31
6	Floral scent and pollinators of Ceropegia trap flowers. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 169-182.	1.2	24
7	Floral signals and filters in a wasp- and a bee-pollinated Gomphocarpus species (Apocynaceae:) Tj ETQq1 1 0.784	314 rgBT , 1.2	Oyerlock 10
8	Temporal Variation of White Rhino Dung Odours. Journal of Chemical Ecology, 2017, 43, 955-965.	1.8	11
9	Changing odour landscapes: the effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication. Functional Ecology, 2017, 31, 56-64.	3.6	42
10	Entering through the narrow gate: A morphological filter explains specialized pollination of a carrion-scented stapeliad. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 92-103.	1.2	25
11	Convergent recruitment of new pollinators is triggered by independent hybridization events in <i>Narcissus</i> . New Phytologist, 2016, 210, 731-742.	7.3	22
12	Reproductive isolation between <i>Zaluzianskya</i> species: the influence of volatiles and flower orientation on hawkmoth foraging choices. New Phytologist, 2016, 210, 333-342.	7.3	40
13	Ceropegia sandersonii Mimics Attacked Honeybees to Attract Kleptoparasitic Flies for Pollination. Current Biology, 2016, 26, 2787-2793.	3.9	43
14	The effect of trap colour and trapâ€flower distance on prey and pollinator capture in carnivorous <i>Drosera</i> species. Functional Ecology, 2015, 29, 1026-1037.	3.6	19
15	Semen-Like Floral Scents and Pollination Biology of a Sapromyophilous Plant Stemona japonica (Stemonaceae). Journal of Chemical Ecology, 2015, 41, 244-252.	1.8	16
16	Mimicking Livor Mortis: a Well-Known but Unsubstantiated Color Profile in Sapromyiophily. Journal of Chemical Ecology, 2015, 41, 808-815.	1.8	38
17	Context-dependent reproductive isolation mediated by floral scent and color. Evolution; International Journal of Organic Evolution, 2015, 69, 1-13.	2.3	60
18	Floral Reward, Advertisement and Attractiveness to Honey Bees in Dioecious Salix caprea. PLoS ONE, 2014, 9, e93421.	2.5	73

#	Article	IF	CITATIONS
19	Floral scent in natural hybrids of Ipomopsis (Polemoniaceae) and their parental species. Annals of Botany, 2014, 113, 533-544.	2.9	34
20	Diel fragrance pattern correlates with olfactory preferences of diurnal and nocturnal flower visitors in <i>Salix caprea</i> (Salicaceae). Botanical Journal of the Linnean Society, 2014, 175, 624-640.	1.6	42
21	Pollen-ovule ratios and flower visitors of day-flowering and night-flowering Conophytum (Aizoaceae) species in South Africa. Journal of Arid Environments, 2014, 109, 44-53.	2.4	11
22	Effects of Volatile Compounds Emitted by Protea Species (Proteaceae) on Antennal Electrophysiological Responses and Attraction of Cetoniine Beetles. Journal of Chemical Ecology, 2013, 39, 438-446.	1.8	19
23	Nectar sugar composition of <scp>E</scp> uropean <scp>C</scp> aryophylloideae (<scp>C</scp> aryophyllaceae) in relation to flower length, pollination biology and phylogeny. Journal of Evolutionary Biology, 2013, 26, 2244-2259.	1.7	48
24	Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecology Letters, 2013, 16, 1157-1167.	6.4	120
25	Pollination function transferred: modified tepals of Albuca (Hyacinthaceae) serve as secondary stigmas. Annals of Botany, 2012, 110, 565-572.	2.9	7
26	Pollinatorâ€prey conflict in carnivorous plants. Biological Reviews, 2012, 87, 602-615.	10.4	29
27	The evolution of floral mimicry: identifying traits that visually attract pollinators. Functional Ecology, 2012, 26, 1381-1389.	3.6	59
28	Floral scent of four Hawaiian Schiedea species (Caryophyllaceae). Biochemical Systematics and Ecology, 2012, 45, 194-197.	1.3	9
29	Temporal variation of flower scent in Silene otites (Caryophyllaceae): a species with a mixed pollination system. Botanical Journal of the Linnean Society, 2012, 169, 447-460.	1.6	52
30	Pollen grain size variation in Caryophylloideae: a mixed strategy for pollen deposition along styles with long stigmatic areas?. Plant Systematics and Evolution, 2012, 298, 9-24.	0.9	11
31	A framework for comparing pollinator performance: effectiveness and efficiency. Biological Reviews, 2010, 85, 435-451.	10.4	258
32	Pollinators, floral morphology and scent chemistry in the southern African orchid genus Schizochilus. South African Journal of Botany, 2010, 76, 726-738.	2.5	26
33	Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. South African Journal of Botany, 2010, 76, 796-807.	2.5	96
34	Scent chemistry and pollinator attraction in the deceptive trap flowers of Ceropegia dolichophylla. South African Journal of Botany, 2010, 76, 762-769.	2.5	36
35	Volatiles associated with different flower stages and leaves of Acacia cyclops and their potential role as host attractants for Dasineura dielsi (Diptera: Cecidomyiidae). South African Journal of Botany, 2010, 76, 701-709.	2.5	33
36	Variation in scent emission among floral parts and inflorescence developmental stages in beetle-pollinated Protea species (Proteaceae). South African Journal of Botany, 2010, 76, 779-787.	2.5	41

Andreas JÃ¹/4rgens

#	Article	IF	CITATIONS
37	Floral scent composition in early diverging taxa of Asclepiadoideae, and Secamonoideae (Apocynaceae). South African Journal of Botany, 2010, 76, 749-761.	2.5	18
38	Chemical diversity and biological functions of plant volatiles. South African Journal of Botany, 2010, 76, 607-611.	2.5	3
39	Deceptive Behavior in Plants. II. Food Deception by Plants: From Generalized Systems to Specialized Floral Mimicry. Signaling and Communication in Plants, 2009, , 223-246.	0.7	35
40	Pollination biology of Eulophia alta (Orchidaceae) in Amazonia: effects of pollinator composition on reproductive success in different populations. Annals of Botany, 2009, 104, 897-912.	2.9	21
41	Disease Status and Population Origin Effects on Floral Scent: Potential Consequences for Oviposition and Fruit Predation in A Complex Interaction Between A Plant, Fungus, and Noctuid Moth. Journal of Chemical Ecology, 2009, 35, 307-319.	1.8	50
42	Do carnivorous plants use volatiles for attracting prey insects?. Functional Ecology, 2009, 23, 875-887.	3.6	80
43	The hidden language of flowering plants: floral odours as a key for understanding angiosperm evolution?. New Phytologist, 2009, 183, 240-243.	7.3	11
44	Floral Odors of Silene otites: Their Variability and Attractiveness to Mosquitoes. Journal of Chemical Ecology, 2008, 34, 14-25.	1.8	71
45	Chemical diversity of floral volatiles in Asclepiadoideae-Asclepiadeae (Apocynaceae). Biochemical Systematics and Ecology, 2008, 36, 842-852.	1.3	23
46	Floral Scent of Canada Thistle and Its Potential as a Generic Insect Attractant. Journal of Economic Entomology, 2008, 101, 720-727.	1.8	18
47	Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a Silene ? Hadena interaction. Oikos, 2007, 116, 1461-1472.	2.7	5
48	Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a <i>Silene – Hadena</i> interaction. Oikos, 2007, 116, 1461-1472.	2.7	41
49	Inter- and Intraspecific Variation in Floral Scent in the Genus Salix and its Implication for Pollination. Journal of Chemical Ecology, 2007, 33, 749-765.	1.8	59
50	Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interactions, 2007, 1, 245-254.	1.1	47
51	Stereoisomeric pattern of lilac aldehyde in Silene latifolia, a plant involved in a nursery pollination system. Phytochemistry, 2007, 68, 499-504.	2.9	16
52	Nectar dynamics and reproductive success in Saponaria officinalis (Caryophyllaceae) in southern Germany. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 353-364.	1.2	13
53	Nursery pollination by a moth in Silene latifolia : the role of odours in eliciting antennal and behavioural responses. New Phytologist, 2006, 169, 707-718.	7.3	155
54	The chemical nature of fetid floral odours in stapeliads (Apocynaceaeâ€Asclepiadoideaeâ€Ceropegieae). New Phytologist, 2006, 172, 452-468.	7.3	193

Andreas Jürgens

#	Article	IF	CITATIONS
55	Linalool and lilac aldehyde/alcohol in flower scents. Journal of Chromatography A, 2006, 1113, 231-238.	3.7	85
56	Comparative floral morphometrics in day-flowering, night-flowering and self-pollinated Caryophylloideae (Agrostemma, Dianthus, Saponaria, Silene, and Vaccaria). Plant Systematics and Evolution, 2006, 257, 233-250.	0.9	27
57	Chemical composition of leaf volatiles in Macaranga species (Euphorbiaceae) and their potential role as olfactory cues in host-localization of foundress queens of specific ant partners. Biochemical Systematics and Ecology, 2006, 34, 97-113.	1.3	43
58	NaÃ ⁻ ve and Conditioned Responses of Culex pipiens pipiens Biotype molestus (Diptera: Culicidae) to Flower Odors. Journal of Medical Entomology, 2006, 43, 1164-1170.	1.8	37
59	Naìve and Conditioned Responses of <i>Culex pipiens pipiens</i> Biotype <i>molestus</i> (Diptera:) Tj ETQq1	1 0.784314 1.8	4 rgBT /Over
60	Naive and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. Journal of Medical Entomology, 2006, 43, 1164-70.	1.8	17
61	Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry, 2005, 66, 203-213.	2.9	261
62	Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides?. Plant Systematics and Evolution, 2005, 255, 99-109.	0.9	125
63	1,4-Dimethoxybenzene, a Floral Scent Compound in Willows that Attracts an Oligolectic Bee. Journal of Chemical Ecology, 2005, 31, 2993-2998.	1.8	94
64	Flower scent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors?. Biochemical Systematics and Ecology, 2004, 32, 841-859.	1.3	64
65	Chemical composition of anther volatiles in Ranunculaceae: generaâ€specific profiles in <i>Anemone</i> , <i>Aquilegia</i> , <i>Caltha</i> , <i>Pulsatilla</i> , <i>Ranunculus</i> , and <i>Trollius</i> species. American Journal of Botany, 2004, 91, 1969-1980.	1.7	62
66	Nectar sugar composition and floral scent compounds of diurnal and nocturnal Conophytum species (Aizoaceae). South African Journal of Botany, 2004, 70, 191-205.	2.5	16
67	Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochemical Systematics and Ecology, 2003, 31, 345-357.	1.3	103
68	Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochemical Systematics and Ecology, 2002, 30, 383-397.	1.3	159
69	Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sexual Plant Reproduction, 2002, 14, 279-289.	2.2	99
70	Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry, 2000, 55, 551-558.	2.9	124
71	Nectar Dynamics and Sugar Composition in Flowers of <i>Silene</i> and <i>Saponaria</i> Species (Caryophyllaceae). Plant Biology, 1999, 1, 334-345.	3.8	52
72	Reproduction and Pollination in Central European Populations of <i>Silene</i> and <i>Saponaria</i> Species. Botanica Acta, 1996, 109, 316-324.	1.6	94

2

#	Article	IF	CITATIONS
73	Odour-genes covariance within a natural population of subterranean Spalax galili blind mole rats. Biological Journal of the Linnean Society, 0, 96, 483-490.	1.6	12

Ambophily and "super generalism―in Ceratonia siliqua (Fabaceae) pollination. , 0, , 344-373.