Marie-Ange Renault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4927000/publications.pdf

Version: 2024-02-01

47 1,843 papers citations

24 40
h-index g-index

52 52 all docs citations

52 times ranked 3273 citing authors

#	Article	IF	CITATIONS
1	Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 745-763.	1.1	9
2	Full-length Dhh and N-terminal Shh act as competitive antagonists to regulate angiogenesis and vascular permeability. Cardiovascular Research, 2021, 117, 2489-2501.	1.8	5
3	Mast Cells Are the Trigger of Small Vessel Disease and Diastolic Dysfunction in Diabetic Obese Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e193-e207.	1.1	11
4	Tamoxifen Accelerates Endothelial Healing by Targeting ERÎ \pm in Smooth Muscle Cells. Circulation Research, 2020, 127, 1473-1487.	2.0	16
5	Desert Hedgehog-Driven Endothelium Integrity Is Enhanced by Gas1 (Growth Arrest-Specific 1) but Negatively Regulated by Cdon (Cell Adhesion Molecule-Related/Downregulated by Oncogenes). Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e336-e349.	1.1	13
6	Desert hedgehog-primary cilia cross talk shapes mitral valve tissue by organizing smooth muscle actin. Developmental Biology, 2020, 463, 26-38.	0.9	9
7	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. PLoS Biology, 2020, 18, e3000946.	2.6	24
8	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
9	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
10	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
11	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
12	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
13	Blood–brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. , 2020, 18, e3000946.		0
14	Role of Hedgehog Signaling in Vasculature Development, Differentiation, and Maintenance. International Journal of Molecular Sciences, 2019, 20, 3076.	1.8	50
15	High circulating levels of MPO-DNA are associated with thrombosis in patients with MPN. Leukemia, 2019, 33, 2544-2548.	3.3	30
16	Comparison of endothelial promoter efficiency and specificity in mice reveals a subset of Pdgfbâ€positive hematopoietic cells. Journal of Thrombosis and Haemostasis, 2019, 17, 827-840.	1.9	24
17	Vascular endothelial cell expression of JAK2 ^{V617F} is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica, 2019, 104, 70-81.	1.7	80
18	Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice. Cardiovascular Research, 2018, 114, 759-770.	1.8	22

#	Article	IF	CITATIONS
19	Restoring Endothelial Function by Targeting Desert Hedgehog Downstream of Klf2 Improves Critical Limb Ischemia in Adults. Circulation Research, 2018, 123, 1053-1065.	2.0	41
20	Observations on the perfusion recovery of regenerative angiogenesis in an ischemic limb model under hyperoxia. Physiological Reports, 2018, 6, e13736.	0.7	13
21	Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes. Cardiovascular Research, 2016, 109, 217-227.	1.8	51
22	Reprint of: Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomaterialia, 2015, 23, S42-S51.	4.1	5
23	Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix. Journal of Molecular and Cellular Cardiology, 2014, 74, 231-239.	0.9	22
24	Sonic hedgehog mediates a novel pathway of PDGF-BB–dependent vessel maturation. Blood, 2014, 123, 2429-2437.	0.6	61
25	Hedgehog-Dependent Regulation of Angiogenesis and Myogenesis Is Impaired in Aged Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2858-2866.	1.1	33
26	Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis. Circulation Research, 2013, 113, 1148-1158.	2.0	30
27	Desert Hedgehog Promotes Ischemia-Induced Angiogenesis by Ensuring Peripheral Nerve Survival. Circulation Research, 2013, 112, 762-770.	2.0	45
28	CXC-Chemokine Receptor 4 Antagonist AMD3100 Promotes Cardiac Functional Recovery After Ischemia/Reperfusion Injury via Endothelial Nitric Oxide Synthase–Dependent Mechanism. Circulation, 2013, 127, 63-73.	1.6	81
29	CXCR4 Antagonist AMD3100 Accelerates Impaired Wound Healing in Diabetic Mice. Journal of Investigative Dermatology, 2012, 132, 711-720.	0.3	82
30	Estradiol triggers sonic-hedgehog-induced angiogenesis during peripheral nerve regeneration by downregulating hedgehog-interacting protein. Laboratory Investigation, 2012, 92, 532-542.	1.7	23
31	Sonic Hedgehog-Induced Functional Recovery After Myocardial Infarction Is Enhanced by AMD3100-Mediated Progenitor-Cell Mobilization. Journal of the American College of Cardiology, 2011, 57, 2444-2452.	1.2	50
32	NF-κB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. Blood, 2010, 116, 475-484.	0.6	76
33	Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomaterialia, 2010, 6, 3-11.	4.1	286
34	Osteopontin Expression in Cardiomyocytes Induces Dilated Cardiomyopathy. Circulation: Heart Failure, 2010, 3, 431-439.	1.6	46
35	Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. Journal of Molecular and Cellular Cardiology, 2010, 49, 490-498.	0.9	111
36	Mapping 3-Dimensional Neovessel Organization Steps Using Micro-Computed Tomography in a Murine Model of Hindlimb Ischemia–Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2090-2092.	1.1	20

#	Article	IF	CITATIONS
37	The Hedgehog Transcription Factor Gli3 Modulates Angiogenesis. Circulation Research, 2009, 105, 818-826.	2.0	53
38	Endothelial progenitor cells in regenerative medicine and cancer: a decade of research. Trends in Biotechnology, 2008, 26, 276-283.	4.9	59
39	Biological approaches to ischemic tissue repair: gene- and cell-based strategies. Expert Review of Cardiovascular Therapy, 2008, 6, 653-668.	0.6	13
40	Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration. Cardiovascular Research, 2007, 75, 738-747.	1.8	40
41	CREB Mediates UTP-Directed Arterial Smooth Muscle Cell Migration and Expression of the Chemotactic Protein Osteopontin via Its Interaction with Activator Protein-1 Sites. Circulation Research, 2007, 100, 1292-1299.	2.0	30
42	The Matrix Revolutions. Circulation Research, 2007, 100, 749-750.	2.0	16
43	Therapeutic myocardial angiogenesis. Microvascular Research, 2007, 74, 159-171.	1.1	54
44	UTP Induces Osteopontin Expression through a Coordinate Action of NFÎB, Activator Protein-1, and Upstream Stimulatory Factor in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2005, 280, 2708-2713.	1.6	39
45	AP-1 Is Involved in UTP-Induced Osteopontin Expression in Arterial Smooth Muscle Cells. Circulation Research, 2003, 93, 674-681.	2.0	36
46	Extracellular Nucleotides Induce Arterial Smooth Muscle Cell Migration Via Osteopontin. Circulation Research, 2001, 89, 772-778.	2.0	110
47	Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs?. Frontiers in Physiology, 0, 13, .	1.3	20