Ashis Kumar Nandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4926563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AtOZF1 positively regulates JA signaling and SA-JA cross-talk in Arabidopsis thaliana. Journal of Biosciences, 2022, 47, 1.	1.1	4
2	TOPLESS in the regulation of plant immunity. Plant Molecular Biology, 2022, 109, 1-12.	3.9	9
3	MTO1-RESPONDING DOWN 1 (MRD1) is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in Arabidopsis. Plant Cell Reports, 2022, 41, 1319-1328.	5.6	3
4	Recent advances in plant thermomemory. Plant Cell Reports, 2021, 40, 19-27.	5.6	21
5	<scp>MYC2</scp> influences salicylic acid biosynthesis and defense against bacterial pathogens in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2021, 173, 2248-2261.	5.2	27
6	Endophytes from Argemone mexicana and Datura metel activate induced-systemic resistance in multiple hosts and show host- and pathogen-specific protection. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 1016-1019.	1.7	2
7	Long-chain base kinase1 promotes salicylic acid-mediated stomatal immunity in Arabidopsis thaliana. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 796-803.	1.7	5
8	SystemicÂacquired resistance specific proteome of Arabidopsis thaliana. Plant Cell Reports, 2020, 39, 1549-1563.	5.6	10
9	MEDEA-interacting protein LONG-CHAIN BASE KINASE 1 promotes pattern-triggered immunity in Arabidopsis thaliana. Plant Molecular Biology, 2020, 103, 173-184.	3.9	11
10	DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance. Journal of Plant Research, 2020, 133, 409-417.	2.4	9
11	RSI1/FLD is a positive regulator for defense against necrotrophic pathogens. Physiological and Molecular Plant Pathology, 2019, 107, 40-45.	2.5	15
12	CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection. Plant Molecular Biology, 2019, 100, 411-431.	3.9	18
13	AtOZF1 Positively Regulates Defense Against Bacterial Pathogens and NPR1-Independent Salicylic Acid Signaling. Molecular Plant-Microbe Interactions, 2018, 31, 323-333.	2.6	24
14	<i>Arabidopsis thaliana</i> GLUTATHIONEâ€ <i>S</i> â€TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. Molecular Plant Pathology, 2018, 19, 464-475.	4.2	39
15	APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling. Plant Physiology and Biochemistry, 2018, 133, 92-99.	5.8	10
16	The Polycomb-Group Repressor MEDEA Attenuates Pathogen Defense. Plant Physiology, 2018, 177, 1728-1742.	4.8	26
17	Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant Molecular Biology, 2017, 93, 109-120.	3.9	31
18	CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. Journal of Experimental Botany, 2017, 68, 3573-3584.	4.8	52

Ashis Kumar Nandi

#	Article	IF	CITATIONS
19	<scp>GBF</scp> 1 differentially regulates <i><scp>CAT</scp>2</i> and <i><scp>PAD</scp>4</i> transcription to promote pathogen defense in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 91, 802-815.	5.7	49
20	Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling. Journal of Biosciences, 2017, 42, 501-508.	1.1	9
21	<i>Arabidopsis thaliana</i> serpins <scp>AtSRP4</scp> and <scp>AtSRP5</scp> negatively regulate stressâ€induced cell death and effectorâ€triggered immunity induced by bacterial effector <scp>AvrRpt2</scp> . Physiologia Plantarum, 2017, 159, 329-339.	5.2	16
22	The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death. Journal of Biosciences, 2016, 41, 445-453.	1.1	18
23	Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. Journal of Plant Research, 2016, 129, 285-293.	2.4	17
24	Down-regulation of rice serpin gene OsSRP-LRS exaggerates stress-induced cell death. Journal of Plant Biology, 2015, 58, 327-332.	2.1	17
25	Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. Journal of Biosciences, 2015, 40, 137-146.	1.1	20
26	Exogenous application of histone demethylase inhibitor trans-2-phenylcyclopropylamine mimics <i>FLD</i> loss-of-function phenotype in terms of systemic acquired resistance in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2014, 9, e29658.	2.4	13
27	Arabidopsis FLOWERING LOCUS D influences systemic-acquired-resistance-induced expression and histone modifications of WRKY genes. Journal of Biosciences, 2014, 39, 119-126.	1.1	71
28	The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. Journal of Plant Physiology, 2014, 171, 860-867.	3.5	59
29	Down-regulation of OsSAC12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. Journal of Biosciences, 2013, 38, 583-592.	1.1	41
30	<i>Arabidopsis thaliana FLOWERING LOCUS D</i> Is Required for Systemic Acquired Resistance. Molecular Plant-Microbe Interactions, 2013, 26, 1079-1088.	2.6	80
31	HY1 genetically interacts with CBF1 and regulates the activity of the Z-box containing promoters in light signaling pathways in Arabidopsis thaliana. Mechanisms of Development, 2012, 129, 298-307.	1.7	10
32	<i>Arabidopsis thaliana cdd1</i> mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Molecular Plant Pathology, 2011, 12, 855-865.	4.2	30
33	Plastid ω3â€fatty acid desaturaseâ€dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of <i>Arabidopsis thaliana</i> is independent of jasmonic acid. Plant Journal, 2008, 54, 106-117.	5.7	148
34	Arabidopsis ssi2-Conferred Susceptibility to Botrytis cinerea Is Dependent on EDS5 and PAD4. Molecular Plant-Microbe Interactions, 2005, 18, 363-370.	2.6	52
35	The Arabidopsis thaliana Dihydroxyacetone Phosphate Reductase Gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 Is Required for Glycerolipid Metabolism and for the Activation of Systemic Acquired Resistance[W]. Plant Cell, 2004, 16, 465-477.	6.6	175
36	Enhanced Resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 Mutant Is Mediated via an SA-Independent Mechanism. Molecular Plant-Microbe Interactions, 2004, 17, 623-632.	2.6	51

#	Article	IF	CITATIONS
37	Arabidopsis sfd Mutants Affect Plastidic Lipid Composition and Suppress Dwarfing, Cell Death, and the Enhanced Disease Resistance Phenotypes Resulting from the Deficiency of a Fatty Acid Desaturase. Plant Cell, 2003, 15, 2383-2398.	6.6	96
38	Ethylene and Jasmonic Acid Signaling Affect the NPR1-Independent Expression of Defense Genes Without Impacting Resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 Mutant. Molecular Plant-Microbe Interactions, 2003, 16, 588-599.	2.6	58
39	A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant Journal, 2001, 25, 563-574.	5.7	193
40	A conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant. Current Biology, 2000, 10, 215-218.	3.9	51
41	High level expression of soybean trypsin inhibitor gene in transgenic tobacco plants failed to confer resistance against damage caused byHelicoverpa armigera. Journal of Biosciences, 1999, 24, 445-452.	1.1	22