
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/492650/publications.pdf Version: 2024-02-01

FARIO STOSSI

#	Article	IF	CITATIONS
1	Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of c-MYC. Cancers, 2022, 14, 806.	1.7	6
2	Abstract PD8-06: Acquired resistance to tucatinib is associated with EGFR amplification in HER2+ breast cancer (BC) models and can be overcome by a more complete blockade of HER receptor layer. Cancer Research, 2022, 82, PD8-06-PD8-06.	0.4	1
3	Quality Control for Single Cell Imaging Analytics Using Endocrine Disruptor-Induced Changes in Estrogen Receptor Expression. Environmental Health Perspectives, 2022, 130, 27008.	2.8	6
4	Abstract P4-01-01: Resistance to next generation tyrosine kinase inhibitors (TKIs) in HER2-positive breast cancer (BC): Role of <i>HER</i> and <i>PIK3CA</i> mutations and development of new treatment strategies and study models. Cancer Research, 2022, 82, P4-01-01-P4-01-01.	0.4	1
5	Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell, 2021, 184, 384-403.e21.	13.5	94
6	Predicting the Estrogen Receptor Activity of Environmental Chemicals by Single-Cell Image Analysis and Data-driven Modeling. Computer Aided Chemical Engineering, 2021, 50, 481-486.	0.3	3
7	Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Reports Medicine, 2021, 2, 100188.	3.3	15
8	Abstract PD3-09:HER2 L755Smutation is acquired upon resistance to lapatinib and neratinib and confers cross-resistance to tucatinib and trastuzumab in HER2-positive breast cancer cell models. , 2021, , .		2
9	Phenotypic and protein localization heterogeneity associated with <i>AHDC1</i> pathogenic proteinâ€truncating alleles in Xia–Gibbs syndrome. Human Mutation, 2021, 42, 577-591.	1.1	14
10	Identification of celastrol as a novel HIV-1 latency reversal agent by an image-based screen. PLoS ONE, 2021, 16, e0244771.	1.1	1
11	Abstract LB216: Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. , 2021, , .		0
12	Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nature Communications, 2021, 12, 4262.	5.8	24
13	Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Molecular Cell, 2021, 81, 3368-3385.e9.	4.5	135
14	Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. IScience, 2021, 24, 103227.	1.9	3
15	Epigenetic Silencing of MYC By Proteasome Inhibitors. Blood, 2021, 138, 2212-2212.	0.6	1
16	Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene, 2020, 39, 6265-6285.	2.6	52
17	The SINEB1 element in the long non-coding RNA Malat1 is necessary for TDP-43 proteostasis. Nucleic Acids Research, 2020, 48, 2621-2642.	6.5	40
18	Unique cellular protrusions mediate breast cancer cell migration by tethering to osteogenic cells. Npj Breast Cancer, 2020, 6, 42.	2.3	14

#	Article	IF	CITATIONS
19	A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals. SLAS Discovery, 2020, 25, 695-708.	1.4	3
20	A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets. Journal of Virology, 2020, 94, .	1.5	26
21	Single-Cell Distribution Analysis of AR Levels by High-Throughput Microscopy in Cell Models: Application for Testing Endocrine-Disrupting Chemicals. SLAS Discovery, 2020, 25, 684-694.	1.4	4
22	Acquisition of Cisplatin Resistance Shifts Head and Neck Squamous Cell Carcinoma Metabolism toward Neutralization of Oxidative Stress. Cancers, 2020, 12, 1670.	1.7	33
23	Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Research, 2020, 48, 1800-1810.	6.5	15
24	Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms. PLoS Computational Biology, 2020, 16, e1008191.	1.5	11
25	Single Cell Analysis Of Transcriptionally Active Alleles By Single Molecule FISH. Journal of Visualized Experiments, 2020, , .	0.2	1
26	Single Cell Analysis Of Transcriptionally Active Alleles By Single Molecule FISH. Journal of Visualized Experiments, 2020, , .	0.2	2
27	Development of the Texas A&M Superfund Research Program Computational Platform for Data Integration, Visualization, and Analysis. Computer Aided Chemical Engineering, 2019, 46, 967-972.	0.3	3
28	The Signaling Pathways Project, an integrated â€~omics knowledgebase for mammalian cellular signaling pathways. Scientific Data, 2019, 6, 252.	2.4	82
29	Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS ONE, 2019, 14, e0224405.	1.1	23
30	Leveraging Image-Derived Phenotypic Measurements for Drug-Target Interaction Predictions. Cancer Informatics, 2019, 18, 117693511985659.	0.9	7
31	VCAM1 Is Induced in Ovarian Theca and Stromal Cells in a Mouse Model of Androgen Excess. Endocrinology, 2019, 160, 1377-1393.	1.4	19
32	Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell Metabolism, 2019, 29, 1274-1290.e9.	7.2	106
33	OR23-5 A Model "Obesogenâ€; Tributyltin, Promotes Steatosis in Human Liver Cells by Upregulating Lipogenic Gene Expression as a Consequence of Alterations in Both Genomic and Non-Genomic Signaling. Journal of the Endocrine Society, 2019, 3, .	0.1	0
34	Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nature Medicine, 2018, 24, 505-511.	15.2	47
35	Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Scientific Reports, 2018, 8, 4306.	1.6	77
36	A homing system targets therapeutic T cells to brain cancer. Nature, 2018, 561, 331-337.	13.7	36

#	Article	IF	CITATIONS
37	Steroid Receptor Coactivator-2 Controls the Pentose Phosphate Pathway through RPIA in Human Endometrial Cancer Cells. Scientific Reports, 2018, 8, 13134.	1.6	6
38	CARM1 methylates MED12 to regulate its RNA-binding ability. Life Science Alliance, 2018, 1, e201800117.	1.3	43
39	Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nature Communications, 2017, 8, 15045.	5.8	34
40	Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 2017, 544, 250-254.	13.7	555
41	Reversible Reaction-Based Fluorescent Probe for Real-Time Imaging of Glutathione Dynamics in Mitochondria. ACS Sensors, 2017, 2, 1257-1261.	4.0	103
42	Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS ONE, 2017, 12, e0180141.	1.1	37
43	A cellular platform to enable targeted brain delivery of T cells to glioblastoma Journal of Clinical Oncology, 2017, 35, 2053-2053.	0.8	3
44	High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget, 2016, 7, 16962-16974.	0.8	18
45	Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nature Communications, 2016, 7, 11612.	5.8	66
46	Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell, 2015, 28, 240-252.	7.7	69
47	Defining Estrogenic Mechanisms of Bisphenol A Analogs through High Throughput Microscopy-Based Contextual Assays. Chemistry and Biology, 2014, 21, 743-753.	6.2	58
48	Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic Acids Research, 2013, 41, 4036-4048.	6.5	47
49	The Estrogen-Regulated Transcription Factor PITX1 Coordinates Gene-Specific Regulation by Estrogen Receptor-Alpha in Breast Cancer Cells. Molecular Endocrinology, 2011, 25, 1699-1709.	3.7	26
50	Genomic Collaboration of Estrogen Receptor α and Extracellular Signal-Regulated Kinase 2 in Regulating Gene and Proliferation Programs. Molecular and Cellular Biology, 2011, 31, 226-236.	1.1	107
51	Estrogen Receptor Alpha Represses Transcription of Early Target Genes via p300 and CtBP1. Molecular and Cellular Biology, 2009, 29, 1749-1759.	1.1	59
52	Bibenzyl- and stilbene-core compounds with non-polar linker atom substituents as selective ligands for estrogen receptor beta. European Journal of Medicinal Chemistry, 2009, 44, 3412-3424.	2.6	27
53	Phenethyl pyridines with non-polar internal substitutents as selective ligands for estrogen receptor beta. European Journal of Medicinal Chemistry, 2009, 44, 3560-3570.	2.6	6
54	Analogs of methyl-piperidinopyrazole (MPP): Antiestrogens with estrogen receptor α selective activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 108-110.	1.0	46

#	Article	IF	CITATIONS
55	Monoaryl-Substituted Salicylaldoximes as Ligands for Estrogen Receptor β. Journal of Medicinal Chemistry, 2008, 51, 1344-1351.	2.9	26
56	Whole-Genome Cartography of Estrogen Receptor \hat{I}_{\pm} Binding Sites. PLoS Genetics, 2007, 3, e87.	1.5	400
57	Elemental Isomerism: A Boron-Nitrogen Surrogate for a Carbon-Carbon Double Bond Increases the Chemical Diversity of Estrogen Receptor Ligands. Chemistry and Biology, 2007, 14, 659-669.	6.2	66
58	Kinase-Specific Phosphorylation of the Estrogen Receptor Changes Receptor Interactions with Ligand, Deoxyribonucleic Acid, and Coregulators Associated with Alterations in Estrogen and Tamoxifen Activity. Molecular Endocrinology, 2006, 20, 3120-3132.	3.7	166
59	Estrogen-occupied Estrogen Receptor Represses Cyclin G2 Gene Expression and Recruits a Repressor Complex at the Cyclin G2 Promoter. Journal of Biological Chemistry, 2006, 281, 16272-16278.	1.6	106
60	lsocoumarins as estrogen receptor beta selective ligands: Isomers of isoflavone phytoestrogens and their metabolites. Bioorganic and Medicinal Chemistry, 2005, 13, 6529-6542.	1.4	62
61	Synthesis and Evaluation of Estrogen Receptor Ligands with Bridged Oxabicyclic Cores Containing a Diarylethylene Motif:  Estrogen Antagonists of Unusual Structure. Journal of Medicinal Chemistry, 2005, 48, 7261-7274.	2.9	64
62	Indazole Estrogens: Highly Selective Ligands for the Estrogen Receptor β. Journal of Medicinal Chemistry, 2005, 48, 1132-1144.	2.9	190
63	Selective Estrogen Receptor Modulators. Cancer Research, 2004, 64, 1522-1533.	0.4	321