Fabio Stossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/492650/publications.pdf

Version: 2024-02-01

172457 138484 3,622 63 29 58 citations h-index g-index papers 65 65 65 6319 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 2017, 544, 250-254.	27.8	555
2	Whole-Genome Cartography of Estrogen Receptor α Binding Sites. PLoS Genetics, 2007, 3, e87.	3.5	400
3	Selective Estrogen Receptor Modulators. Cancer Research, 2004, 64, 1522-1533.	0.9	321
4	Indazole Estrogens: Â Highly Selective Ligands for the Estrogen Receptor \hat{l}^2 . Journal of Medicinal Chemistry, 2005, 48, 1132-1144.	6.4	190
5	Kinase-Specific Phosphorylation of the Estrogen Receptor Changes Receptor Interactions with Ligand, Deoxyribonucleic Acid, and Coregulators Associated with Alterations in Estrogen and Tamoxifen Activity. Molecular Endocrinology, 2006, 20, 3120-3132.	3.7	166
6	Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Molecular Cell, 2021, 81, 3368-3385.e9.	9.7	135
7	Genomic Collaboration of Estrogen Receptor α and Extracellular Signal-Regulated Kinase 2 in Regulating Gene and Proliferation Programs. Molecular and Cellular Biology, 2011, 31, 226-236.	2.3	107
8	Estrogen-occupied Estrogen Receptor Represses Cyclin G2 Gene Expression and Recruits a Repressor Complex at the Cyclin G2 Promoter. Journal of Biological Chemistry, 2006, 281, 16272-16278.	3.4	106
9	Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell Metabolism, 2019, 29, 1274-1290.e9.	16.2	106
10	Reversible Reaction-Based Fluorescent Probe for Real-Time Imaging of Glutathione Dynamics in Mitochondria. ACS Sensors, 2017, 2, 1257-1261.	7.8	103
11	Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell, 2021, 184, 384-403.e21.	28.9	94
12	The Signaling Pathways Project, an integrated †omics knowledgebase for mammalian cellular signaling pathways. Scientific Data, 2019, 6, 252.	5.3	82
13	Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Scientific Reports, 2018, 8, 4306.	3.3	77
14	Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell, 2015, 28, 240-252.	16.8	69
15	Elemental Isomerism: A Boron-Nitrogen Surrogate for a Carbon-Carbon Double Bond Increases the Chemical Diversity of Estrogen Receptor Ligands. Chemistry and Biology, 2007, 14, 659-669.	6.0	66
16	Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nature Communications, 2016, 7, 11612.	12.8	66
17	Synthesis and Evaluation of Estrogen Receptor Ligands with Bridged Oxabicyclic Cores Containing a Diarylethylene Motif:  Estrogen Antagonists of Unusual Structure. Journal of Medicinal Chemistry, 2005, 48, 7261-7274.	6.4	64
18	Isocoumarins as estrogen receptor beta selective ligands: Isomers of isoflavone phytoestrogens and their metabolites. Bioorganic and Medicinal Chemistry, 2005, 13, 6529-6542.	3.0	62

#	Article	IF	CITATIONS
19	Estrogen Receptor Alpha Represses Transcription of Early Target Genes via p300 and CtBP1. Molecular and Cellular Biology, 2009, 29, 1749-1759.	2.3	59
20	Defining Estrogenic Mechanisms of Bisphenol A Analogs through High Throughput Microscopy-Based Contextual Assays. Chemistry and Biology, 2014, 21, 743-753.	6.0	58
21	Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene, 2020, 39, 6265-6285.	5.9	52
22	Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic Acids Research, 2013, 41, 4036-4048.	14.5	47
23	Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nature Medicine, 2018, 24, 505-511.	30.7	47
24	Analogs of methyl-piperidinopyrazole (MPP): Antiestrogens with estrogen receptor \hat{l}_{\pm} selective activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 108-110.	2.2	46
25	CARM1 methylates MED12 to regulate its RNA-binding ability. Life Science Alliance, 2018, 1, e201800117.	2.8	43
26	The SINEB1 element in the long non-coding RNA Malat1 is necessary for TDP-43 proteostasis. Nucleic Acids Research, 2020, 48, 2621-2642.	14.5	40
27	Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS ONE, 2017, 12, e0180141.	2.5	37
28	A homing system targets therapeutic T cells to brain cancer. Nature, 2018, 561, 331-337.	27.8	36
29	Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nature Communications, 2017, 8, 15045.	12.8	34
30	Acquisition of Cisplatin Resistance Shifts Head and Neck Squamous Cell Carcinoma Metabolism toward Neutralization of Oxidative Stress. Cancers, 2020, 12, 1670.	3.7	33
31	Bibenzyl- and stilbene-core compounds with non-polar linker atom substituents as selective ligands for estrogen receptor beta. European Journal of Medicinal Chemistry, 2009, 44, 3412-3424.	5.5	27
32	Monoaryl-Substituted Salicylaldoximes as Ligands for Estrogen Receptor \hat{l}^2 . Journal of Medicinal Chemistry, 2008, 51, 1344-1351.	6.4	26
33	The Estrogen-Regulated Transcription Factor PITX1 Coordinates Gene-Specific Regulation by Estrogen Receptor-Alpha in Breast Cancer Cells. Molecular Endocrinology, 2011, 25, 1699-1709.	3.7	26
34	A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets. Journal of Virology, 2020, 94, .	3.4	26
35	Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nature Communications, 2021, 12, 4262.	12.8	24
36	Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS ONE, 2019, 14, e0224405.	2.5	23

#	Article	IF	Citations
37	VCAM1 Is Induced in Ovarian Theca and Stromal Cells in a Mouse Model of Androgen Excess. Endocrinology, 2019, 160, 1377-1393.	2.8	19
38	High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget, 2016, 7, 16962-16974.	1.8	18
39	Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Research, 2020, 48, 1800-1810.	14.5	15
40	Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Reports Medicine, 2021, 2, 100188.	6.5	15
41	Unique cellular protrusions mediate breast cancer cell migration by tethering to osteogenic cells. Npj Breast Cancer, 2020, 6, 42.	5.2	14
42	Phenotypic and protein localization heterogeneity associated with <i>AHDC1</i> pathogenic proteinâ€truncating alleles in Xiaâ€"Gibbs syndrome. Human Mutation, 2021, 42, 577-591.	2.5	14
43	Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms. PLoS Computational Biology, 2020, 16, e1008191.	3.2	11
44	Leveraging Image-Derived Phenotypic Measurements for Drug-Target Interaction Predictions. Cancer Informatics, $2019, 18, 117693511985659$.	1.9	7
45	Phenethyl pyridines with non-polar internal substitutents as selective ligands for estrogen receptor beta. European Journal of Medicinal Chemistry, 2009, 44, 3560-3570.	5.5	6
46	Steroid Receptor Coactivator-2 Controls the Pentose Phosphate Pathway through RPIA in Human Endometrial Cancer Cells. Scientific Reports, 2018, 8, 13134.	3.3	6
47	Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of c-MYC. Cancers, 2022, 14, 806.	3.7	6
48	Quality Control for Single Cell Imaging Analytics Using Endocrine Disruptor-Induced Changes in Estrogen Receptor Expression. Environmental Health Perspectives, 2022, 130, 27008.	6.0	6
49	Single-Cell Distribution Analysis of AR Levels by High-Throughput Microscopy in Cell Models: Application for Testing Endocrine-Disrupting Chemicals. SLAS Discovery, 2020, 25, 684-694.	2.7	4
50	Development of the Texas A& M Superfund Research Program Computational Platform for Data Integration, Visualization, and Analysis. Computer Aided Chemical Engineering, 2019, 46, 967-972.	0.5	3
51	A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals. SLAS Discovery, 2020, 25, 695-708.	2.7	3
52	Predicting the Estrogen Receptor Activity of Environmental Chemicals by Single-Cell Image Analysis and Data-driven Modeling. Computer Aided Chemical Engineering, 2021, 50, 481-486.	0.5	3
53	Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. IScience, 2021, 24, 103227.	4.1	3
54	A cellular platform to enable targeted brain delivery of T cells to glioblastoma Journal of Clinical Oncology, 2017, 35, 2053-2053.	1.6	3

#	Article	IF	CITATIONS
55	Abstract PD3-09:HER2 L755Smutation is acquired upon resistance to lapatinib and neratinib and confers cross-resistance to tucatinib and trastuzumab in HER2-positive breast cancer cell models., 2021,,.		2
56	Single Cell Analysis Of Transcriptionally Active Alleles By Single Molecule FISH. Journal of Visualized Experiments, 2020, , .	0.3	2
57	Identification of celastrol as a novel HIV-1 latency reversal agent by an image-based screen. PLoS ONE, 2021, 16, e0244771.	2.5	1
58	Single Cell Analysis Of Transcriptionally Active Alleles By Single Molecule FISH. Journal of Visualized Experiments, 2020, , .	0.3	1
59	Epigenetic Silencing of MYC By Proteasome Inhibitors. Blood, 2021, 138, 2212-2212.	1.4	1
60	Abstract PD8-06: Acquired resistance to tucatinib is associated with EGFR amplification in HER2+ breast cancer (BC) models and can be overcome by a more complete blockade of HER receptor layer. Cancer Research, 2022, 82, PD8-06-PD8-06.	0.9	1
61	Abstract P4-01-01: Resistance to next generation tyrosine kinase inhibitors (TKIs) in HER2-positive breast cancer (BC): Role of <i>HER</i> and <i>PIK3CA</i> mutations and development of new treatment strategies and study models. Cancer Research, 2022, 82, P4-01-01-P4-01-01.	0.9	1
62	Abstract LB216: Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity., 2021,,.		0
63	OR23-5 A Model "Obesogenâ€, Tributyltin, Promotes Steatosis in Human Liver Cells by Upregulating Lipogenic Gene Expression as a Consequence of Alterations in Both Genomic and Non-Genomic Signaling. Journal of the Endocrine Society, 2019, 3, .	0.2	O