
Wang Pengfei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4926444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of UV laserâ€induced damage resistance of the fluoride ontaining phosphate glasses by regulating the intrinsic defects. Journal of the American Ceramic Society, 2022, 105, 2546-2555.	3.8	6
2	Enhancement of the radiation resistance of cerium-containing fluorophosphate glasses through codoping with Sb2O3 and Bi2O3. Ceramics International, 2022, 48, 20041-20052.	4.8	1
3	Toward Highâ€Quality Laserâ€Driven Lightings: Chromaticityâ€Tunable Phosphorâ€inâ€Glass Film with "Phosphor Pattern―Design. Laser and Photonics Reviews, 2022, 16, .	8.7	37
4	Multicore Photonic Complex-Valued Neural Network with Transformation Layer. Photonics, 2022, 9, 384.	2.0	2
5	Development of Iowâ€loss leadâ€germanate glass for midâ€infrared fiber optics: II. preform extrusion and fiber fabrication. Journal of the American Ceramic Society, 2021, 104, 833-850.	3.8	12
6	Development of lowâ€loss leadâ€germanate glass for midâ€infrared fiber optics: I. glass preparation optimization. Journal of the American Ceramic Society, 2021, 104, 860-876.	3.8	9
7	Enhanced 3.9  µm emission from diode pumped Ho ³⁺ /Eu ³⁺ codoped fluoroi glasses. Optics Letters, 2021, 46, 2031.	ndate 3.3	16
8	Spectroscopic properties of ErF3 doped tellurite–gallium oxyfluoride glass for â^¼3 <i>μ</i> m laser materials. Journal of Applied Physics, 2021, 129, .	2.5	7
9	Laser-induced fluorescence and its effect on the damage resistance of fluoride-containing phosphate-based glasses. Ceramics International, 2021, 47, 13164-13172.	4.8	5
10	2.86 μm emission and fluorescence enhancement through controlled precipitation of ZnTe nanocrystals in DyF3 doped multicomponent tellurite oxyfluoride glass. Journal of Non-Crystalline Solids, 2021, 564, 120842.	3.1	9
11	Effect of melting atmospheres on the optical property of radiation-hard fluorophosphate glass. Ceramics International, 2021, 47, 22468-22477.	4.8	5
12	Demonstration of 128-Channel Optical Phased Array With Large Scanning Range. IEEE Photonics Journal, 2021, 13, 1-10.	2.0	8
13	Photoluminescence of Yb3+/Ce3+ co-doped aluminosilicate glasses under ultraviolet irradiation. Journal of Non-Crystalline Solids, 2020, 528, 119540.	3.1	2
14	Third-order optical nonlinearity properties of CdCl2-modifed Ge–Sb–S chalcogenide glasses. Journal of Non-Crystalline Solids, 2020, 528, 119757.	3.1	11
15	Spectroscopic properties of Yb3+ doped TeO2–TiO2–Bi2O3 laser glasses. Results in Physics, 2020, 16, 102852.	4.1	6
16	Development of low-loss lead-germanate glass for mid-infrared fiber optics. , 2020, , .		1
17	Tunable broadband emission from red to blue by gamma radiation in multicomponent phosphate glasses. Journal of the American Ceramic Society, 2019, 102, 48-52.	3.8	2
18	Effect of Ba(PO ₃) ₂ addition on the optical properties of Tm ³⁺ -doped fluorophosphate glasses. Optical Materials Express, 2019, 9, 1233.	3.0	3

WANG PENGFEI

#	Article	IF	CITATIONS
19	Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices. Journal of Applied Physics, 2018, 123, .	2.5	5
20	Influence of ZnO and Heat Treatment Process on the Physical and Optical Properties of MgO-Al ₂ O ₃ -SiO ₂ Glass-Ceramics. ECS Journal of Solid State Science and Technology, 2018, 7, N42-N45.	1.8	5
21	Theoretical Modeling of 4.3 μ m Mid-Infrared Lasing in Dy ³⁺ -Doped Chalcogenide Fiber Lasers. IEEE Photonics Journal, 2018, 10, 1-11.	2.0	13
22	Chalcogenide glasses with embedded ZnS nanocrystals: Potential midâ€infrared laser host for divalent transition metal ions. Journal of the American Ceramic Society, 2018, 101, 666-673.	3.8	16
23	Investigation of InGaAs/GaAs Quantum Well Lasers with Slightly Doped Tunnel Junction. Semiconductors, 2018, 52, 2017-2021.	0.5	2
24	Hybrid Integration of a Tunneling Diode and a 1310 nm DFB Semiconductor Laser. , 2018, , .		1
25	Quantum Well Laser-Based Optical Bistable Switching Device. , 2018, , .		0
26	Crystallization and Dielectric Properties of Transparent Na ₂ O-Nb ₂ O ₅ -SiO ₂ Based Glass-Ceramics. ECS Journal of Solid State Science and Technology, 2018, 7, N81-N85.	1.8	3
27	Analysis of Partial Crystallization in Yb3+Doped Aluminophosphosilicate Fiber Preforms Prepared with Organic Chelate Precursor Doping Technique. ECS Journal of Solid State Science and Technology, 2017, 6, P138-P143.	1.8	3
28	Magnetoâ€optical effects of Geâ€Gaâ€Sb(In)â€S chalcogenide glasses with diamagnetic responses. Journal of the American Ceramic Society, 2017, 100, 2914-2920.	3.8	8
29	Effect of iodine (I 2) on structural, thermal and optical properties of Ge-Sb-S chalcohalide host glasses and ones doped with Dy. Journal of Non-Crystalline Solids, 2017, 464, 81-88.	3.1	14
30	High Verdet constants and diamagnetic responses of GeS_2-In_2S_3-PbI_2 chalcogenide glasses for integrated optics applications. Optics Express, 2017, 25, 20410.	3.4	28
31	Natural healing behavior of gamma radiation induced defects in multicomponent phosphate glasses used for high energy UV lasers. Optical Materials Express, 2017, 7, 3284.	3.0	3
32	Effects of doping SiO_2 on the defect's change in B_2O_3-containing phosphate based laser glasses used for high energy UV lasers. Optical Materials Express, 2017, 7, 4111.	3.0	2
33	Significant improvement of gamma radiation resistance in CeO_2 doped phosphate glass by co-doping with Sb_2O_3. Optical Materials Express, 2017, 7, 1113.	3.0	10
34	Effects of doping B_2O_3 on the defects-state in SiO_2-containing phosphate based glasses. Optical Materials Express, 2017, 7, 2697.	3.0	7
35	Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation. Scientific Reports, 2016, 6, 18926.	3.3	15
36	Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature. Journal of Alloys and Compounds, 2016, 685, 153-158.	5.5	9

WANG PENGFEI

#	Article	IF	CITATIONS
37	Fundamental-frequency-absorbed oxyfluoride glass in a high-power laser. Applied Optics, 2016, 55, 2649.	2.1	0
38	Effects of Gamma Radiation and Heat Treatment on the Photoluminescence of the Fluoride-Containing Phosphate-Based Glasses. ECS Journal of Solid State Science and Technology, 2016, 5, R192-R197.	1.8	4
39	Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage. Scientific Reports, 2015, 5, 8593.	3.3	22
40	Effects of Cu on properties of vitrified bond and vitrified CBN composites. International Journal of Refractory Metals and Hard Materials, 2015, 50, 269-273.	3.8	25
41	Investigations on the photoluminescence spectra and its defect-related nature for the ultraviolet transmitting fluoride-containing phosphate-based glasses. Journal of Non-Crystalline Solids, 2015, 425, 130-137.	3.1	23
42	Spectroscopic properties of Yb ³⁺ -doped TeO ₂ —BaO—BaF ₂ —Nb ₂ O ₅ -based oxyfluoride tellurite glasses. Chinese Physics B, 2014, 23, 097801.	1.4	3
43	Spectroscopic and thermal properties of Yb3+ doped TeO2–Bi2O3–Nb2O5 based tellurite glasses. Journal of Luminescence, 2014, 153, 29-33.	3.1	15
44	Preparation of the oxyfluoride glass with high 3ï‰ laser induced damage threshold. Optics and Laser Technology, 2014, 56, 88-91.	4.6	4
45	Near- and mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+co-doped lead cesium iodide modified chalcohalide glasses. Journal of Luminescence, 2014, 148, 10-17.	3.1	12
46	Mid-infrared emissions of Pr 3+ -doped GeS 2 –Ga 2 S 3 –CdI 2 chalcohalide glasses. Materials Research Bulletin, 2014, 60, 391-396.	5.2	10
47	Infrared emission properties of Dy3+-doped and Dy3+,Tm3+-codoped chalcohalide glasses. Journal of Non-Crystalline Solids, 2014, 383, 205-208.	3.1	4
48	Effects of alkaline-earth fluorides and OHâ^' on spectroscopic properties of Yb3+ doped TeO2–ZnO–B2O3 based glasses. Journal of Luminescence, 2013, 140, 26-29.	3.1	14
49	Crystallization and absorption properties of novel photo-thermal refractive glasses with the addition of B2O3. Journal of Non-Crystalline Solids, 2013, 368, 55-62.	3.1	5
50	Investigation of mid-IR luminescence properties and energy transfer in Dy3+-doped and Dy3+, Tm3+-codoped chalcohalide glasses. Optical Materials, 2013, 35, 1499-1503.	3.6	19
51	The damage property of oxyfluoride glasses irradiated by a 351 nm high fluence laser. Laser Physics, 2013, 23, 076005.	1.2	1
52	Spectroscopic properties of ZrF ₄ -based fluorophosphate laser glasses with large stimulated emission cross-section and high thermal stability. Laser Physics, 2013, 23, 045805.	1.2	6
53	Yb3+ doped fluorophosphate laser glasses with high gain coefficient and improved laser property. Solid State Sciences, 2012, 14, 550-553.	3.2	15
54	Spectroscopic properties of new Yb3+-doped TeO2–ZnO–Nb2O5 based tellurite glasses with high emission cross-section. Optical Materials, 2012, 34, 1549-1552.	3.6	20

WANG PENGFEI

#	Article	IF	CITATIONS
55	Fabrication and characterization of Yb^3+-doped gain-guided index-antiguided fiber with D-shaped inner cladding. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1498.	2.1	6
56	Fabrication of high thermal conductive Al–cBN ceramic sinters by high temperature high pressure method. Solid State Sciences, 2011, 13, 1041-1046.	3.2	16
57	Research on the direct doping effect of silicon on cubic boron nitride ceramics by UV–VIS diffuse reflectance. Materials Chemistry and Physics, 2010, 123, 356-359.	4.0	8
58	Third-order nonlinear optical properties of GeS_2-Sb_2S_3-CdS chalcogenide glasses. Optics Express, 2010, 18, 23275.	3.4	33
59	Formation of flower-like MgO crystal and its effect on the photoluminescence of Mg-cBN ceramics. Journal of Alloys and Compounds, 2010, 492, 532-535.	5.5	4
60	Yb3+-doped Fluorophosphate Glass with High Cross Section and Lifetime. Journal of Materials Science and Technology, 2010, 26, 921-924.	10.7	17
61	Effect of ZnO on the interfacial bonding between Na2O–B2O3–SiO2 vitrified bond and diamond. Solid State Sciences, 2009, 11, 1427-1432.	3.2	41
62	Annealing effects on the morphology and luminescence of cubic boron nitride based ceramics. Solid State Sciences, 2009, 11, 2162-2166.	3.2	3
63	Effect of CaO on the surface morphology and strength of water soaked Na2O–B2O3–Al2O3–SiO2 vitrified bond. Journal of Non-Crystalline Solids, 2008, 354, 3019-3024.	3.1	23
64	Influences of Alkaline-Earth Metal Oxides on the Properties of Vitrified Bond. Key Engineering Materials, 0, 368-372, 1405-1407.	0.4	2
65	The Nature of the Defects in Phosphate-Based Glasses Induced by Gamma Radiation. , 0, , .		1