Varsha G Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4926148/publications.pdf

Version: 2024-02-01

361045 414034 1,152 33 20 32 citations h-index g-index papers 35 35 35 2153 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Transgenic expression of proximal tubule peroxisome proliferator–activated receptor-α in mice confers protection during acute kidney injury. Kidney International, 2009, 76, 1049-1062.	2.6	115
2	MPP+-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport. Brain Research, 1996, 715, 1-8.	1.1	95
3	Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity. Toxicology and Applied Pharmacology, 2009, 238, 150-159.	1.3	90
4	Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicology and Applied Pharmacology, 2013, 266, 109-121.	1.3	88
5	Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicology and Applied Pharmacology, 2014, 281, 221-229.	1.3	82
6	Age and sex differences in kidney microRNA expression during the life span of F344 rats. Biology of Sex Differences, 2015, 6, 1.	1.8	66
7	Age and sex dependent changes in liver gene expression during the life cycle of the rat. BMC Genomics, 2010, 11, 675.	1.2	63
8	Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages. PLoS ONE, 2015, 10, e0117047.	1.1	56
9	Effect of (+)-usnic acid on mitochondrial functions as measured by mitochondria-specific oligonucleotide microarray in liver of B6C3F1 mice. Mitochondrion, 2009, 9, 149-158.	1.6	53
10	Sex differences in kidney gene expression during the life cycle of F344 rats. Biology of Sex Differences, 2013, 4, 14.	1.8	48
11	Changes in expression level of genes as a function of time of day in the liver of rats. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 549, 115-129.	0.4	42
12	Early metabolomics changes in heart and plasma during chronic doxorubicin treatment in B6C3F ₁ mice. Journal of Applied Toxicology, 2016, 36, 1486-1495.	1.4	37
13	Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F1 mice. Toxicology and Applied Pharmacology, 2016, 310, 159-174.	1.3	33
14	Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice. Toxicology and Applied Pharmacology, 2016, 295, 68-84.	1.3	33
15	Nucleoside reverse transcriptase inhibitors (NRTIs)-induced expression profile of mitochondria-related genes in the mouse liver. Mitochondrion, 2008, 8, 181-195.	1.6	31
16	Sex and age differences in the expression of liver microRNAs during the life span of F344 rats. Biology of Sex Differences, 2017, 8, 6.	1.8	27
17	Activity Profile of Glutathione-Dependent Enzymes and Respiratory Chain Complexes in Rats Supplemented with Antioxidants and Treated with Carcinogens. Archives of Biochemistry and Biophysics, 2001, 394, 255-264.	1.4	24
18	Development of mitochondria-specific mouse oligonucleotide microarray and validation of data by real-time PCR. Mitochondrion, 2007, 7, 322-329.	1.6	24

#	Article	IF	Citations
19	Expression Analysis of Hepatic Mitochondria-Related Genes in Mice Exposed to Acrylamide and Glycidamide. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 324-339.	1.1	23
20	Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to Doxorubicin in tumor-bearing spontaneously hypertensive rats. Cancer Chemotherapy and Pharmacology, 2015, 76, 447-459.	1.1	22
21	Effect of short-term exposure to zidovudine (AZT) on the expression of mitochondria-related genes in skeletal muscle of neonatal mice. Mitochondrion, 2009, 9, 9-16.	1.6	19
22	In Vitro Modulation of Redox and Metabolism Interplay at the Brain Vascular Endothelium: Genomic and Proteomic Profiles of Sulforaphane Activity. Scientific Reports, 2018, 8, 12708.	1.6	17
23	Candidate early predictive plasma protein markers of doxorubicin-induced chronic cardiotoxicity in B6C3F1 mice. Toxicology and Applied Pharmacology, 2019, 363, 164-173.	1.3	15
24	Testing for treatment effects on gene ontology. BMC Bioinformatics, 2008, 9, S20.	1.2	14
25	Transcriptional profiling for understanding the basis of mitochondrial involvement in disease and toxicity using the mitochondria-specific MitoChip. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 616, 210-212.	0.4	8
26	Evaluation of Hepatic Mitochondria and Hematological Parameters in Zidovudine-Treated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>B6C AIDS Research and Treatment, 2012, 2012, 1-8.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>	:3Fa./smml:	mtæxt>
27	Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone. Reproductive Toxicology, 2018, 82, 111-123.	1.3	7
28	Doxorubicinâ€induced delayedâ€onset subclinical cardiotoxicity in mice. Journal of Applied Toxicology, 2021, , .	1.4	6
29	MicroRNAâ€34aâ€5p as a promising early circulating preclinical biomarker of doxorubicinâ€induced chronic cardiotoxicity. Journal of Applied Toxicology, 2022, 42, 1477-1490.	1.4	4
30	Designing Toxicogenomics Studies that use DNA Array Technology. Bioinformatics and Biology Insights, 2008, 2, 117793220800200.	1.0	1
31	Designing toxicogenomics studies that use DNA array technology. Bioinformatics and Biology Insights, 2008, 2, 317-28.	1.0	1
32	Doxorubicin Cardiotoxicity: Preclinical and Clinical Circulating Protein Markers. Biomarkers in Disease, 2022, , 1-27.	0.0	1
33	Rebuttal to the comments by Dr. Yan Xu on the article "Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone― Reproductive Toxicology, 2020, 94, 102.	1.3	0