Boris Estrine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/492563/publications.pdf

Version: 2024-02-01

279798 377865 1,193 42 23 34 h-index citations g-index papers 43 43 43 1305 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Physical-chemical and toxicological properties of osmolyte-based cationic surfactants and spontaneously formed low-toxic catanionic vesicles out of them. Journal of Molecular Liquids, 2022, 361, 119549.	4.9	O
2	Synthesis of Alkyl Polyglycosides From Glucose and Xylose for Biobased Surfactants: Synthesis, Properties, and Applications. , 2019, , 365-385.		9
3	Life cycle assessment of the production of surface-active alkyl polyglycosides from acid-assisted ball-milled wheat straw compared to the conventional production based on corn-starch. Green Chemistry, 2018, 20, 2135-2141.	9.0	12
4	Transglycosylation: A Key Reaction to Access Alkylpolyglycosides from Lignocellulosic Biomass. ChemSusChem, 2018, 11, 1395-1409.	6.8	20
5	Biosourced lauroyl poly(glycerol-succinate) oligoesters modified by copolymerizable solvents: A wasteless and eco-friendly surfactants properties enhancement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 88-95.	4.7	6
6	Oligoether carboxylate counterions: An innovative way towards surfactant ionic liquids. Journal of Molecular Liquids, 2018, 251, 61-69.	4.9	17
7	High Catalytic Performance of Aquivion PFSA, a Reusable Solid Perfluorosulfonic Acid Polymer, in the Biphasic Glycosylation of Glucose with Fatty Alcohols. ACS Catalysis, 2017, 7, 2990-2997.	11.2	37
8	Conversion of Cellulose into Amphiphilic Alkyl Glycosides Catalyzed by Aquivion, a Perfluorosulfonic Acid Polymer. ChemSusChem, 2017, 10, 3604-3610.	6.8	32
9	\hat{l}^2 -Amino acid derived gemini surfactants from diformylfuran (DFF) with particularly low critical micelle concentration (CMC). Green Chemistry, 2017, 19, 4074-4079.	9.0	31
10	Acyl Poly(Glycerolâ€Succinic Acid) Oligoesters: Synthesis, Physicochemical and Functional Properties, and Biodegradability. Journal of Surfactants and Detergents, 2016, 19, 933-941.	2.1	10
11	Simple efficient one-pot synthesis of 5-hydroxymethylfurfural and 2,5-diformylfuran from carbohydrates. Reaction Chemistry and Engineering, 2016, 1, 176-182.	3.7	24
12	Acidâ€Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides. ChemSusChem, 2015, 8, 3263-3269.	6.8	55
13	Visible Light-Accelerated Depolymerisation of Starch Under Fenton Conditions and Preparation of Calcium Sequestering Compounds. Catalysis Letters, 2014, 144, 1674-1680.	2.6	2
14	Succinylation of Nonâ€ionic Surfactants: Physicochemical Characterization, Functional Properties, Biodegradability and Mathematical Modeling of the Polarity Tuning. Journal of Surfactants and Detergents, 2014, 17, 591-602.	2.1	4
15	Fast and efficient DMSO-mediated dehydration of carbohydrates into 5-hydroxymethylfurfural. Catalysis Communications, 2014, 51, 5-9.	3. 3	51
16	Manufacture of decyl pentosides surfactants by wood hemicelluloses transglycosidation: A potential pretreatment process for wood biomass valorization. Industrial Crops and Products, 2014, 58, 335-339.	5.2	11
17	New method for lignocellulosic biomass polysaccharides conversion in butanol, an efficient route for the production of butyl glycosides from wheat straw or poplar wood. Cellulose, 2013, 20, 2179-2184.	4.9	16
18	Sulfoxides and sulfones as solvents for the manufacture of alkyl polyglycosides without added catalyst. Green Chemistry, 2013, 15, 3027.	9.0	7

#	Article	IF	Citations
19	Use of Furandicarboxylic Acid and Its Decyl Ester as Additives in the Fischer's Glycosylation of Decanol by <scp>d</scp> â€Glucose: Physicochemical Properties of the Surfactant Compositions Obtained. Journal of Surfactants and Detergents, 2013, 16, 147-154.	2.1	25
20	Biodegradability and cytotoxicity of choline soaps on human cell lines: effects of chain length and the cation. RSC Advances, 2013, 3, 23347.	3.6	51
21	Sulfonated surfactants obtained from furfural. Green Chemistry, 2013, 15, 1558.	9.0	24
22	Synthesis, characterization, biodegradability and surfactant properties of bio-sourced lauroyl poly(glycerol-succinate) oligoesters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 263-273.	4.7	26
23	Isomerization of d-glucose into d-fructose with a heterogeneous catalyst in organic solvents. Catalysis Communications, 2013, 39, 35-38.	3.3	59
24	Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose. International Journal of Molecular Sciences, 2012, 13, 348-357.	4.1	16
25	Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol. Polymer Degradation and Stability, 2012, 97, 1956-1963.	5.8	22
26	New pretreatment of wheat straw and bran in hexadecanol for the combined production of emulsifying base, glucose and lignin material. Carbohydrate Polymers, 2012, 88, 657-662.	10.2	25
27	Synthesis and Surface Properties of Succinic Acid Endâ€Capped Alkylâ€Polyxylosides. Journal of Surfactants and Detergents, 2012, 15, 191-198.	2.1	9
28	Enzymatic synthesis of alkyl \hat{l}^2 -d-xylosides and oligoxylosides from xylans and from hydrothermally pretreated wheat bran. Green Chemistry, 2011, 13, 2380.	9.0	42
29	Improved sulfuric acid decrystallization of wheat straw to obtain high yield carbohydrates. Cellulose, 2011, 18, 1521-1525.	4.9	13
30	Direct conversion of xylan into alkyl pentosides. Carbohydrate Research, 2010, 345, 2469-2473.	2.3	51
31	Low Catalyst Loadings for the Production of Carboxylic Acids from Polysaccharides and Hydrogen Peroxide. ChemSusChem, 2010, 3, 1200-1203.	6.8	14
32	Development of Agriculture Left-Overs: Fine Organic Chemicals from Wheat Hemicellulose-Derived Pentoses. Topics in Current Chemistry, 2010, 294, 79-115.	4.0	55
33	Direct conversion of wheat bran hemicelluloses into n-decyl-pentosides. Green Chemistry, 2010, 12, 1929.	9.0	42
34	Recycling in telomerization of butadiene with <scp>D</scp> â€xylose: Pd(TPPTS) _{<i>n</i>} â€KF/Al ₂ O ₃ as an active catalyst. Applied Organometallic Chemistry, 2007, 21, 945-946.	3.5	29
35	Neutral pentosides surfactants issued from the butadiene telomerization with pentoses: preparation and amphiphilic properties. Carbohydrate Research, 2006, 341, 1938-1944.	2.3	32
36	Effects of the reactants concentration in the butadiene telomerization with d-xylose and parallel influence of triethylamine as additive. Journal of Molecular Catalysis A, 2006, 244, 93-98.	4.8	34

#	Article	IF	CITATION
37	Telomerization of butadiene with pentoses in water: selective etherifications. Green Chemistry, 2005, 7, 219-223.	9.0	53
38	Telomerization of Butadiene with L-Arabinose and D-Xylose in DMF: Selective Formation of their Monooctadienyl Glycosides. European Journal of Organic Chemistry, 2004, 2004, 2914-2922.	2.4	53
39	15-Membered Triolefinic Macrocycles \hat{a} Catalytic Role of (E,E,E)-1,6,11-Tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene Complexes of Palladium(0) in the Presence of Phosphanes. European Journal of Organic Chemistry, 2003, 2003, 274-283.	2.4	25
40	Recycling in telomerization of butadiene with methanol and phenol: Pd–KF/Al2O3as an active heterogeneous catalyst system. Green Chemistry, 2003, 5, 686-689.	9.0	26
41	15-Membered macrocyclic triolefin: role in recovering active palladium catalyst for the telomerization of butadiene with methanol. Tetrahedron Letters, 2001, 42, 7055-7057.	1.4	28
42	Heck arylation of allylic alcohols in molten salts. Journal of Organometallic Chemistry, 2001, 634, 153-156.	1.8	95