Dylan M Owen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925617/publications.pdf

Version: 2024-02-01

101543 98798 5,059 87 36 67 citations g-index h-index papers 94 94 94 6778 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative Measurements of Membrane Lipid Order in Yeast and Fungi. Methods in Molecular Biology, 2022, 2402, 291-298.	0.9	1
2	The T cell receptor displays lateral signal propagation involving non-engaged receptors. Nanoscale, 2022, 14, 3513-3526.	5.6	3
3	Correction of multiple-blinking artifacts in photoactivated localization microscopy. Nature Methods, 2022, 19, 594-602.	19.0	16
4	Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules. Nature Communications, 2021, 12, 517.	12.8	12
5	Blinking statistics and molecular counting in direct stochastic reconstruction microscopy (dSTORM). Bioinformatics, 2021, 37, 2730-2737.	4.1	4
6	The Role of Protein and Lipid Clustering in Lymphocyte Activation. Frontiers in Immunology, 2021, 12, 600961.	4.8	13
7	LXR directly regulates glycosphingolipid synthesis and affects human CD4+ T cell function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
8	Asymmetric glycerophospholipids impart distinctive biophysical properties to lipid bilayers. Biophysical Journal, 2021, 120, 1746-1754.	0.5	10
9	Super-Resolution Imaging Approaches for Quantifying F-Actin in Immune Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 676066.	3.7	7
10	Differential nanoscale organisation of LFA-1 modulates T-cell migration. Journal of Cell Science, 2020, 133, .	2.0	12
11	Laurdan and Di-4-ANEPPDHQ Influence the Properties of Lipid Membranes: A Classical Molecular Dynamics and Fluorescence Study. Journal of Physical Chemistry B, 2020, 124, 11419-11430.	2.6	20
12	Asymmetry across the membrane. Nature Chemical Biology, 2020, 16, 605-606.	8.0	8
13	Machine learning for cluster analysis of localization microscopy data. Nature Communications, 2020, 11, 1493.	12.8	55
14	An agent-based model of molecular aggregation at the cell membrane. PLoS ONE, 2020, 15, e0226825.	2.5	9
15	Analysis methods for interrogating spatial organisation of single molecule localisation microscopy data. International Journal of Biochemistry and Cell Biology, 2020, 123, 105749.	2.8	8
16	Multi-color Molecular Visualization of Signaling Proteins Reveals How C-Terminal Src Kinase Nanoclusters Regulate T Cell Receptor Activation. Cell Reports, 2020, 33, 108523.	6.4	15
17	On the interaction of hyaluronic acid with synovial fluid lipid membranes. Physical Chemistry Chemical Physics, 2019, 21, 9845-9857.	2.8	43
18	Bridging the Nanoscopy-Immunology Gap. Frontiers in Physics, 2019, 6, .	2.1	4

#	Article	IF	CITATIONS
19	Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells. Methods, 2018, 140-141, 112-118.	3.8	13
20	Membrane lipid order of subâ€synaptic T cell vesicles correlates with their dynamics and function. Traffic, 2018, 19, 29-35.	2.7	8
21	Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels. Biophysical Journal, 2018, 115, 1498-1508.	0.5	54
22	Quantitative fibre analysis of single-molecule localization microscopy data. Scientific Reports, 2018, 8, 10418.	3.3	25
23	Galectin-9 binds IgM-BCR to regulate B cell signaling. Nature Communications, 2018, 9, 3288.	12.8	85
24	Dynamic Bayesian Cluster Analysis of Liveâ€Cell Single Molecule Localization Microscopy Datasets. Small Methods, 2018, 2, 1800008.	8.6	13
25	PRODAN differentially influences its local environment. Physical Chemistry Chemical Physics, 2018, 20, 16060-16066.	2.8	13
26	Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nature Protocols, 2017, 12, 453-460.	12.0	149
27	Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse. Biophysical Journal, 2017, 112, 1703-1713.	0.5	54
28	Quantification of fibrous spatial point patterns from single-molecule localization microscopy (SMLM) data. Bioinformatics, 2017, 33, 1703-1711.	4.1	11
29	Quantitative Analysis of Membrane Protein Clustering from Live-Cell, Single-Molecule Super-Resolution Microscopy Data. Biophysical Journal, 2017, 112, 144a-145a.	0.5	1
30	Bright, near infrared emitting PLGA–PEG dye-doped CN-PPV nanoparticles for imaging applications. RSC Advances, 2017, 7, 15255-15264.	3.6	23
31	Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. Cell Reports, 2017, 18, 2715-2728.	6.4	69
32	Toward an Axial Nanoscale Ruler for Fluorescence Microscopy. ACS Nano, 2017, 11, 11762-11767.	14.6	6
33	3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse. Scientific Reports, 2017, 7, 4077.	3.3	36
34	Superresolution imaging of the cytoplasmic phosphatase PTPN22 links integrin-mediated T cell adhesion with autoimmunity. Science Signaling, 2016, 9, ra99.	3.6	37
35	The <scp>aPKC</scp> /Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis. Traffic, 2016, 17, 66-79.	2.7	6
36	A Bayesian cluster analysis method for single-molecule localization microscopy data. Nature Protocols, 2016, 11, 2499-2514.	12.0	55

#	Article	IF	CITATIONS
37	Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nature Communications, 2016, 7, 12471.	12.8	468
38	Hydrophobin-Encapsulated Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4887-4893.	8.0	15
39	Protein clustering and spatial organization in T-cells. Biochemical Society Transactions, 2015, 43, 315-321.	3.4	10
40	Cortical Actin Flow in T Cells Quantified by Spatio-temporal Image Correlation Spectroscopy of Structured Illumination Microscopy Data. Journal of Visualized Experiments, 2015, , e53749.	0.3	8
41	Enhancing Quantum Dots for Bioimaging using Advanced Surface Chemistry and Advanced Optical Microscopy: Application to Silicon Quantum Dots (SiQDs). Advanced Materials, 2015, 27, 6144-6150.	21.0	57
42	Platelet actin nodules are podosome-like structures dependent on Wiskott–Aldrich syndrome protein and ARP2/3 complex. Nature Communications, 2015, 6, 7254.	12.8	86
43	Discreet and distinct clustering of five model membrane proteins revealed by single molecule localization microscopy. Molecular Membrane Biology, 2015, 32, 11-18.	2.0	8
44	Topographic prominence as a method for cluster identification in singleâ€molecule localisation data. Journal of Biophotonics, 2015, 8, 925-934.	2.3	25
45	The Nanoscale Organization of Signaling Domains at the Plasma Membrane. Current Topics in Membranes, 2015, 75, 125-165.	0.9	11
46	Bayesian cluster identification in single-molecule localization microscopy data. Nature Methods, 2015, 12, 1072-1076.	19.0	124
47	Evidence for annexin <scp>A</scp> 6â€dependent plasma membrane remodelling of lipid domains. British Journal of Pharmacology, 2015, 172, 1677-1690.	5.4	38
48	Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 35695-35710.	3.4	70
49	Molecular Flow Quantified beyond the Diffraction Limit by Spatiotemporal Image Correlation of Structured Illumination Microscopy Data. Biophysical Journal, 2014, 107, L21-L23.	0.5	30
50	Tropomyosin Tm5NM1 Spatially Restricts Src Kinase Activity through Perturbation of Rab11 Vesicle Trafficking. Molecular and Cellular Biology, 2014, 34, 4436-4446.	2.3	10
51	Method for co-cluster analysis in multichannel single-molecule localisation data. Histochemistry and Cell Biology, 2014, 141, 605-612.	1.7	71
52	Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nature Immunology, 2013, 14, 82-89.	14.5	206
53	Quantitative Analysis of Three-Dimensional Fluorescence Localization Microscopy Data. Biophysical Journal, 2013, 105, L05-L07.	0.5	31
54	CD317/Tetherin is an organiser of membrane microdomains. Journal of Cell Science, 2013, 126, 1553-64.	2.0	40

#	Article	IF	CITATIONS
55	Superresolution Microscopy Reveals Nanometer-Scale Reorganization of Inhibitory Natural Killer Cell Receptors upon Activation of NKG2D. Science Signaling, 2013, 6, ra62.	3 . 6	69
56	Protein Kinase C Controls Vesicular Transport and Secretion of Apolipoprotein E from Primary Human Macrophages. Journal of Biological Chemistry, 2013, 288, 5186-5197.	3.4	19
57	Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. Frontiers in Plant Science, 2013, 4, 503.	3.6	61
58	Characterization of a New Series of Fluorescent Probes for Imaging Membrane Order. PLoS ONE, 2013, 8, e52960.	2.5	65
59	Fluorescence localization microscopy. Communicative and Integrative Biology, 2012, 5, 345-349.	1.4	7
60	Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nature Communications, 2012, 3, 1256.	12.8	223
61	Targeted subendothelial matrix oxidation by myeloperoxidase triggers myosin II-dependent de-adhesion and alters signaling in endothelial cells. Free Radical Biology and Medicine, 2012, 53, 2344-2356.	2.9	30
62	Quantitative imaging of membrane lipid order in cells and organisms. Nature Protocols, 2012, 7, 24-35.	12.0	364
63	Optical Techniques for Imaging Membrane Domains in Live Cells (Live-Cell Palm of Protein Clustering). Methods in Enzymology, 2012, 504, 221-235.	1.0	25
64	Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8770-8775.	7.1	170
65	The lipid raft hypothesis revisited – New insights on raft composition and function from superâ€resolution fluorescence microscopy. BioEssays, 2012, 34, 739-747.	2.5	150
66	The structure and luminescence properties of europium(iii) triflate doped self-assembled pyromellitamide gels. New Journal of Chemistry, 2011, 35, 1466.	2.8	16
67	Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nature Immunology, 2011, 12, 655-662.	14.5	302
68	Primary Human CD4+ T Cells Have Diverse Levels of Membrane Lipid Order That Correlate with Their Function. Journal of Immunology, 2011, 186, 3505-3516.	0.8	71
69	Optimized timeâ€gated generalized polarization imaging of Laurdan and diâ€4â€ANEPPDHQ for membrane order image contrast enhancement. Microscopy Research and Technique, 2010, 73, 618-622.	2.2	23
70	PALM imaging and cluster analysis of protein heterogeneity at the cell surface. Journal of Biophotonics, 2010, 3, 446-454.	2.3	248
71	Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methods. Immunology, 2010, 131, 1-8.	4.4	20
72	Dynamics of Subsynaptic Vesicles and Surface Microclusters at the Immunological Synapse. Science Signaling, 2010, 3, ra36.	3.6	120

#	Article	IF	CITATIONS
73	High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Molecular Membrane Biology, 2010, 27, 178-189.	2.0	73
74	Imaging Membrane Lipid Order in Whole, Living Vertebrate Organisms. Biophysical Journal, 2010, 99, L7-L9.	0.5	39
75	Chapter 4 Multidimensional fluorescence imaging. Laboratory Techniques in Biochemistry and Molecular Biology / Edited By T S Work [and] E Work, 2009, 33, 133-169.	0.2	4
76	Quantitative Microscopy: Protein Dynamics and Membrane Organisation. Traffic, 2009, 10, 962-971.	2.7	132
77	Lipid order and molecular assemblies in the plasma membrane of eukaryotic cells. Biochemical Society Transactions, 2009, 37, 1056-1060.	3.4	11
78	A compact, multidimensional spectrofluorometer exploiting supercontinuum generation. Journal of Biophotonics, 2008, 1, 494-505.	2.3	33
79	High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis. Journal of Biophotonics, 2008, 1, 514-521.	2.3	53
80	High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers. Biophysical Journal, 2008, 95, L66-L68.	0.5	64
81	Improved sectioning in a slit scanning confocal microscope. Optics Letters, 2008, 33, 1813.	3.3	21
82	Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging. Optics Letters, 2008, 33, 1887.	3.3	26
83	Optical techniques for imaging membrane lipid microdomains in living cells. Seminars in Cell and Developmental Biology, 2007, 18, 591-598.	5.0	42
84	Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source. Optics Letters, 2007, 32, 3408.	3.3	67
85	Rapid hyperspectral fluorescence lifetime imaging. Microscopy Research and Technique, 2007, 70, 481-484.	2.2	53
86	The Ternary Rab27a-Myrip-Myosin VIIa Complex Regulates Melanosome Motility in the Retinal Pigment Epithelium. Traffic, 2007, 8, 486-499.	2.7	81
87	Fluorescence Lifetime Imaging Provides Enhanced Contrast when Imaging the Phase-Sensitive Dye di-4-ANEPPDHQ in Model Membranes and Live Cells. Biophysical Journal, 2006, 90, L80-L82.	0.5	141