Bernardo Rodriguez-Iturbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925600/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress. Journal of Biological Chemistry, 2012, 287, 40732-40744.	3.4	558
2	Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney International, 2005, 67, 237-247.	5.2	464
3	Subtle Acquired Renal Injury as a Mechanism of Salt-Sensitive Hypertension. New England Journal of Medicine, 2002, 346, 913-923.	27.0	413
4	Mechanisms of Disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nature Clinical Practice Nephrology, 2006, 2, 582-593.	2.0	350
5	Role of the Immune System in Hypertension. Physiological Reviews, 2017, 97, 1127-1164.	28.8	284
6	Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. American Journal of Physiology - Renal Physiology, 2008, 295, F1134-F1141.	2.7	254
7	The Current State of Poststreptococcal Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2008, 19, 1855-1864.	6.1	240
8	Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. American Journal of Physiology - Renal Physiology, 2004, 286, F606-F616.	2.7	229
9	Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. American Journal of Physiology - Renal Physiology, 2002, 282, F191-F201.	2.7	219
10	Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney International, 2001, 59, 2222-2232.	5.2	213
11	Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver. PLoS ONE, 2012, 7, e47948.	2.5	207
12	Mycophenolate Mofetil Treatment Improves Hypertension in Patients with Psoriasis and Rheumatoid Arthritis. Journal of the American Society of Nephrology: JASN, 2006, 17, S218-S225.	6.1	199
13	High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3138-3143.	7.1	183
14	Antioxidant-Rich Diet Relieves Hypertension and Reduces Renal Immune Infiltration in Spontaneously Hypertensive Rats. Hypertension, 2003, 41, 341-346.	2.7	167
15	Uric Acid Is a Strong Risk Marker for Developing Hypertension From Prehypertension. Hypertension, 2018, 71, 78-86.	2.7	159
16	Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. American Journal of Physiology - Renal Physiology, 2001, 281, F38-F47.	2.7	155
17	Early and Sustained Inhibition of Nuclear Factor-κB Prevents Hypertension in Spontaneously Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 51-57.	2.5	133
18	Endogenous Fructose Production and Fructokinase Activation Mediate Renal Injury in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 2526-2538.	6.1	127

#	Article	IF	CITATIONS
19	Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. American Journal of Physiology - Renal Physiology, 2003, 284, F447-F454.	2.7	115
20	Evolution of Renal Interstitial Inflammation and NF-κB Activation in Spontaneously Hypertensive Rats. American Journal of Nephrology, 2004, 24, 587-594.	3.1	107
21	Uric Acid and Hypertension: An Update With Recommendations. American Journal of Hypertension, 2020, 33, 583-594.	2.0	104
22	Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. Journal of Applied Physiology, 2007, 102, 255-260.	2.5	100
23	RESPONSE TO ACUTE PROTEIN LOAD IN KIDNEY DONORS AND IN APPARENTLY NORMAL POSTACUTE GLOMERULONEPHRITIS PATIENTS: EVIDENCE FOR GLOMERULAR HYPERFILTRATION. Lancet, The, 1985, 326, 461-464.	13.7	96
24	Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. American Journal of Physiology - Renal Physiology, 2002, 283, F1132-F1141.	2.7	96
25	Mycophenolate mofetil administration reduces renal inflammation, oxidative stress, and arterial pressure in rats with lead-induced hypertension. American Journal of Physiology - Renal Physiology, 2007, 293, F616-F623.	2.7	96
26	Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R251-R256.	1.8	95
27	Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney International, 2005, 68, 2131-2142.	5.2	91
28	The Immunological Basis of Hypertension. American Journal of Hypertension, 2014, 27, 1327-1337.	2.0	86
29	Renal Cortical Vasoconstriction Contributes to Development of Salt-Sensitive Hypertension after Angiotensin II Exposure. Journal of the American Society of Nephrology: JASN, 2001, 12, 2263-2271.	6.1	84
30	Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. American Journal of Physiology - Renal Physiology, 2013, 304, F289-F299.	2.7	81
31	Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-8.	4.0	80
32	Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R840-R846.	1.8	76
33	Epidemic poststreptococcal glomerulonephritis. Kidney International, 1984, 25, 129-136.	5.2	72
34	Pathophysiological Mechanisms of Salt-Dependent Hypertension. American Journal of Kidney Diseases, 2007, 50, 655-672.	1.9	72
35	ATTACK RATE OF POSTSTREPTOCOCCAL NEPHRITIS IN FAMILIES. Lancet, The, 1981, 317, 401-403.	13.7	69
36	Glomerular hemodynamic changes associated with arteriolar lesions and tubulointerstitial inflammation. Kidney International, 2003, 64, S9-S14.	5.2	67

#	Article	IF	CITATIONS
37	Autoimmunity in the pathogenesis of hypertension. Nature Reviews Nephrology, 2014, 10, 56-62.	9.6	67
38	Renal inflammation, autoimmunity and saltâ€sensitive hypertension. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 96-103.	1.9	66
39	Hypertension in Page (cellophane-wrapped) kidney is due to interstitial nephritis. Kidney International, 2005, 68, 1161-1170.	5.2	64
40	Impaired pressure natriuresis resulting in salt-sensitive hypertension is caused by tubulointerstitial immune cell infiltration in the kidney. American Journal of Physiology - Renal Physiology, 2013, 304, F982-F990.	2.7	62
41	Relationship between glomerular filtration rate and renal blood flow at different levels of protein-induced hyperfiltration in man. Clinical Science, 1988, 74, 11-15.	4.3	61
42	Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney International, 2005, 68, 1041-1047.	5.2	61
43	Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nature Reviews Nephrology, 2014, 10, 415-420.	9.6	57
44	Chronic Exposure to Low Doses of Lead Results in Renal Infiltration of Immune Cells, NF-κB Activation, and Overexpression of Tubulointerstitial Angiotensin II. Antioxidants and Redox Signaling, 2005, 7, 1269-1274.	5.4	48
45	Neuraminidase Activity and Free Sialic Acid Levels in the Serum of Patients with Acute Poststreptococcal Glomerulonephritis. New England Journal of Medicine, 1981, 304, 1506-1510.	27.0	46
46	Vimentin and heat shock protein expression are induced in the kidney by angiotensin and by nitric oxide inhibition. Kidney International, 2003, 64, S46-S51.	5.2	44
47	Angiotensin II, interstitial inflammation, and the pathogenesis of salt-sensitive hypertension. American Journal of Physiology - Renal Physiology, 2006, 291, F1281-F1287.	2.7	44
48	The role of renal microvascular disease and interstitial inflammation in salt-sensitive hypertension. Hypertension Research, 2010, 33, 975-980.	2.7	44
49	Hyperuricemia in Kidney Disease: A Major Risk Factor for Cardiovascular Events, Vascular Calcification, and Renal Damage. Seminars in Nephrology, 2020, 40, 574-585.	1.6	43
50	The discovery of hypertension: evolving views on the role of the kidneys, and current hot topics. American Journal of Physiology - Renal Physiology, 2015, 308, F167-F178.	2.7	41
51	Evidence for an autologous immune complex pathogenic mechanism in acute poststreptococcal glomerulonephritis. Kidney International, 1978, 14, 501-510.	5.2	39
52	Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 560865.	3.4	38
53	Characterization of the Glomerular Antibody in Acute Poststreptococcal Glomerulonephritis. Annals of Internal Medicine, 1980, 92, 478.	3.9	32
54	Experimental induction of salt-sensitive hypertension is associated with lymphocyte proliferative response to HSP70. Kidney International, 2008, 74, S55-S59.	5.2	28

#	Article	IF	CITATIONS
55	Acute effects of salt on blood pressure are mediated by serum osmolality. Journal of Clinical Hypertension, 2018, 20, 1447-1454.	2.0	27
56	The renal functional reserve in health and renal disease in school age children. Kidney International, 1988, 34, 809-816.	5.2	25
57	The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. British Journal of Pharmacology, 2019, 176, 1829-1838.	5.4	25
58	The role of T cells in the pathogenesis of primary hypertension. Nephrology Dialysis Transplantation, 2012, 27, iv2-iv5.	0.7	24
59	Tubular stress test detects subclinical reduction in renal functioning mass. Kidney International, 2001, 59, 1094-1102.	5.2	23
60	Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension. Current Opinion in Nephrology and Hypertension, 2013, 22, 37-44.	2.0	23
61	Fibroblast growth factor 23—Klotho and hypertension: experimental and clinical mechanisms. Pediatric Nephrology, 2021, 36, 3007-3022.	1.7	23
62	Hypertension Induced by Aortic Coarctation Above the Renal Arteries Is Associated With Immune Cell Infiltration of the Kidneys. American Journal of Hypertension, 2005, 18, 1449-1456.	2.0	22
63	Autoimmunity in the Pathogenesis of Hypertension. Hypertension, 2015, 67, HYPERTENSIONAHA.115.06418.	2.7	22
64	Salt Sensitivity in Response to Renal Injury Requires Renal Angiotensin-Converting Enzyme. Hypertension, 2015, 66, 534-542.	2.7	22
65	Impaired creatinine secretion after an intravenous creatinine load is an early characteristic of the nephropathy of sickle cell anaemia. Nephrology Dialysis Transplantation, 2002, 17, 602-607.	0.7	18
66	Renal infiltration of immunocompetent cells: cause and effect of sodium-sensitive hypertension. Clinical and Experimental Nephrology, 2010, 14, 105-111.	1.6	16
67	The Role of P2X7 Purinergic Receptors in the Renal Inflammation Associated with Angiotensin II-Induced Hypertension. International Journal of Molecular Sciences, 2020, 21, 4041.	4.1	16
68	Hyperuricemia and chronic kidney disease: to treat or not to treat. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2021, 43, 572-579.	0.9	16
69	Mini Review: Reappraisal of Uric Acid in Chronic Kidney Disease. American Journal of Nephrology, 2021, 52, 837-844.	3.1	16
70	Neuraminidase promotes neutrophil, lymphocyte and macrophage infiltration in the normal rat kidney. Kidney International, 1995, 47, 88-95.	5.2	15
71	End-stage renal disease prevention strategies in Latin America. Kidney International, 2005, 68, S30-S36.	5.2	15
72	Hyperosmolarity and Increased Serum Sodium Concentration Are Risks for Developing Hypertension Regardless of Salt Intake: A Five-Year Cohort Study in Japan. Nutrients, 2020, 12, 1422.	4.1	12

0

#	Article	IF	CITATIONS
73	Autoimmunity in Acute Poststreptococcal GN: A Neglected Aspect of the Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 534-542.	6.1	12
74	Functional Reserve of the Kidney. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 458-466.	4.5	11
75	Rethinking progression of CKD as a process of punctuated equilibrium. Nature Reviews Nephrology, 2018, 14, 411-412.	9.6	9
76	Genetic Polymorphisms in Hypertension: Are We Missing the Immune Connection?. American Journal of Hypertension, 2019, 32, 113-122.	2.0	9
77	Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R347-R359.	1.8	4
78	La participación de la inmunidad en la patogenia de la hipertensión arterial. Nefrologia, 2020, 40, 1-3.	0.4	3
79	Primary aldosteronism: A consequence of sugar and western Diet?. Medical Hypotheses, 2022, 160, 110796.	1.5	2
80	Renal Doppler sonographic and histologic findings in post-transplant primary cytomegalovirus disease. Journal of Clinical Ultrasound, 2000, 28, 430-434.	0.8	1
81	The participation of immunity in the pathogenesis of arterial hypertension. Nefrologia, 2020, 40, 1-3.	0.4	1

82 Hypertension: Classification and Diagnosis. , 0, , 197-206.