
M. Isabel G. Roncero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative evaluation of two Fusarium oxysporum f. sp. lycopersici strains grown on two different carbon sources: LC-MS - based secretome study after inAvivo 15N metabolic labeling. International Journal of Mass Spectrometry, 2020, 449, 116288.	1.5	3
2	Cu transporter protein CrpF protects against Cu-induced toxicity in <i>Fusarium oxysporum</i> . Virulence, 2020, 11, 1108-1121.	4.4	6
3	Role of the <i>Fusarium oxysporum</i> metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics, 2019, 11, 1230-1240.	2.4	20
4	Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f.sp. lycopersici growth and pathogenicity. Current Genetics, 2018, 64, 493-507.	1.7	8
5	Biochemical and genetic analysis of a unique poly(ADP-ribosyl) glycohydrolase (PARG) of the pathogenic fungus Fusarium oxysporum f. sp. lycopersici. Antonie Van Leeuwenhoek, 2018, 111, 285-295.	1.7	2
6	Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum. Frontiers in Microbiology, 2017, 8, 1627.	3.5	4
7	Combined action of the major secreted exo―and endopolygalacturonases is required for full virulence of <scp><i>F</i></scp> <i>usarium oxysporum</i> . Molecular Plant Pathology, 2016, 17, 339-353.	4.2	50
8	Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in <i>Fusarium oxysporum</i> . Autophagy, 2015, 11, 131-144.	9.1	47
9	Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host. Fungal Genetics and Biology, 2015, 77, 40-49.	2.1	8
10	Isolation and Expression of Enolase Gene in Fusarium oxysporum f. sp. lycopersici. Applied Biochemistry and Biotechnology, 2015, 175, 902-908.	2.9	6
11	Comparative proteomic analyses reveal that Gnt2-mediated N -glycosylation affects cell wall glycans and protein content in Fusarium oxysporum. Journal of Proteomics, 2015, 128, 189-202.	2.4	7
12	The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and Virulence in <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 2015, 28, 55-68.	2.6	36
13	Lipolytic System of the Tomato Pathogen <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1054-1067.	2.6	26
14	The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence. PLoS ONE, 2013, 8, e84690.	2.5	15
15	Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genetics and Biology, 2011, 48, 886-895.	2.1	33
16	Chitin synthaseâ€deficient mutant of <i>Fusarium oxysporum</i> elicits tomato plant defence response and protects against wildâ€ŧype infection. Molecular Plant Pathology, 2010, 11, 479-493.	4.2	27
17	Nuclear Dynamics during Germination, Conidiation, and Hyphal Fusion of Fusarium oxysporum. Eukaryotic Cell, 2010, 9, 1216-1224.	3.4	60
18	Amino acid divergence between the CHS domain contributes to the different intracellular behaviour of Family II fungal chitin synthases in Saccharomyces cerevisiae. Fungal Genetics and Biology, 2010, 47, 1034-1043.	2.1	7

M. ISABEL G. RONCERO

#	Article	IF	CITATIONS
19	Identification of virulence genes in <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> by largeâ€scale transposon tagging. Molecular Plant Pathology, 2009, 10, 95-107.	4.2	40
20	Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cellular Microbiology, 2008, 10, 1339-1351.	2.1	75
21	Ctf1, a transcriptional activator of cutinase and lipase genes inFusarium oxysporumis dispensable for virulence. Molecular Plant Pathology, 2008, 9, 293-304.	4.2	33
22	Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genetics and Biology, 2008, 45, 28-34.	2.1	8
23	The Fusarium oxysporum sti35 gene functions in thiamine biosynthesis and oxidative stress response. Fungal Genetics and Biology, 2008, 45, 6-16.	2.1	23
24	ChsVb, a Class VII Chitin Synthase Involved in Septation, Is Critical for Pathogenicity in <i>Fusarium oxysporum</i> . Eukaryotic Cell, 2008, 7, 112-121.	3.4	84
25	Role of the White Collar 1 Photoreceptor in Carotenogenesis, UV Resistance, Hydrophobicity, and Virulence of <i>Fusarium oxysporum</i> . Eukaryotic Cell, 2008, 7, 1227-1230.	3.4	91
26	Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants. Microbiology (United Kingdom), 2008, 154, 1474-1481.	1.8	21
27	Tomatinase from <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> Is Required for Full Virulence on Tomato Plants. Molecular Plant-Microbe Interactions, 2008, 21, 728-736.	2.6	68
28	Functional Analyses of Laccase Genes from <i>Fusarium oxysporum</i> . Phytopathology, 2008, 98, 509-518.	2.2	60
29	Role of the Transcriptional Activator XlnR of Fusarium oxysporum in Regulation of Xylanase Genes and Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 977-985.	2.6	73
30	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
31	Fusarium oxysporum gas1 Encodes a Putative β-1, 3-Glucanosyltransferase Required for Virulence on Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 1140-1147.	2.6	62
32	G-protein ? subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genetics and Biology, 2005, 42, 61-72.	2.1	61
33	Fusarium oxysporum as a Multihost Model for the Genetic Dissection of Fungal Virulence in Plants and Mammals. Infection and Immunity, 2004, 72, 1760-1766.	2.2	164
34	Role of chitin synthase genes in Fusarium oxysporum. Microbiology (United Kingdom), 2004, 150, 3175-3187.	1.8	70
35	Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Molecular Microbiology, 2003, 47, 257-266.	2.5	139
36	The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 2003, 48, 765-779.	2.5	196

M. ISABEL G. RONCERO

#	Article	IF	CITATIONS
37	Fusarium oxysporum : exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 2003, 4, 315-325.	4.2	360
38	Fusarium as a model for studying virulence in soilborne plant pathogens. Physiological and Molecular Plant Pathology, 2003, 62, 87-98.	2.5	123
39	pH Response Transcription Factor PacC Controls Salt Stress Tolerance and Expression of the P-Type Na + -ATPase Ena1 in Fusarium oxysporum. Eukaryotic Cell, 2003, 2, 1246-1252.	3.4	76
40	Role in Pathogenesis of Two Endo-β-1,4-xylanase Genes from the Vascular Wilt Fungus Fusarium oxysporum. Fungal Genetics and Biology, 2002, 35, 213-222.	2.1	96
41	Molecular Characterization of a Subtilase from the Vascular Wilt Fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2001, 14, 653-662.	2.6	41
42	Molecular characterization of a novel endo-β-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Current Genetics, 2001, 40, 268-275.	1.7	62
43	Molecular Characterization of an Endopolygalacturonase from Fusarium oxysporum Expressed during Early Stages of Infection. Applied and Environmental Microbiology, 2001, 67, 2191-2196.	3.1	84
44	A MAP kinase of the vascular wilt fungus <i>Fusarium oxysporum</i> is essential for root penetration and pathogenesis. Molecular Microbiology, 2001, 39, 1140-1152.	2.5	378
45	A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 2001, 39, 1140-1152.	2.5	9
46	Cloning and Disruption of pgx4 Encoding an In Planta Expressed Exopolygalacturonase from Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2000, 13, 359-365.	2.6	73
47	Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum. Current Genetics, 1999, 35, 36-40.	1.7	55
48	Two xylanase genes of the vascular wilt pathogen Fusarium oxysporum are differentially expressed during infection of tomato plants. Molecular Genetics and Genomics, 1999, 261, 530-536.	2.4	57
49	Folyt1, a New Member of the hAT Family, Is Active in the Genome of the Plant Pathogen Fusarium oxysporum. Fungal Genetics and Biology, 1999, 27, 67-76.	2.1	36
50	Cross protection provides evidence for race-specific avirulence factors inFusarium oxysporum. Physiological and Molecular Plant Pathology, 1999, 54, 63-72.	2.5	32
51	Cloning, Expression, and Role in Pathogenicity of <i>pg1</i> Encoding the Major Extracellular Endopolygalacturonase of the Vascular Wilt Pathogen <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 1998, 11, 91-98.	2.6	268
52	Endopolygalacturonase PG1 in Different Formae Speciales of <i>Fusarium oxysporum</i> . Applied and Environmental Microbiology, 1998, 64, 1967-1971.	3.1	19
53	Purification and characterization of an acidic endo-β-1,4-xylanase from the tomato vascular pathogen Fusarium oxysporum f. sp. lycopersici. FEMS Microbiology Letters, 1997, 148, 75-82.	1.8	18
54	Purification and characterization of a novel exopolygalacturonase from Fusarium oxysporum f.sp. lycopersici. FEMS Microbiology Letters, 1997, 154, 37-43.	1.8	28

M. ISABEL G. RONCERO

#	Article	IF	CITATIONS
55	Biolistic transformation of Mucor circinelloides. Mycological Research, 1997, 101, 953-956.	2.5	21
56	Purification and characterization of a pectate lyase fromFusarium oxysporumf.sp.lycopersiciproduced on tomato vascular tissue. Physiological and Molecular Plant Pathology, 1996, 49, 177-185.	2.5	24
57	A homologous and self-replicating system for efficient transformation ofFusarium oxysporum. Current Genetics, 1996, 29, 191-198.	1.7	31
58	Stress-induced rearrangement of Fusarium retrotransposon sequences. Molecular Genetics and Genomics, 1996, 253, 89-94.	2.4	39
59	Purification and characterization of an exo-polygalacturonase from the tomato vascular wilt pathogenFusarium oxysporumf.sp.lycopersici. FEMS Microbiology Letters, 1996, 145, 295-299.	1.8	57
60	A homologous and self-replicating system for efficient transformation of Fusarium oxysporum. Current Genetics, 1996, 29, 191-198.	1.7	3
61	skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Molecular Genetics and Genomics, 1995, 249, 637-647.	2.4	62
62	Occurrence of a retrotransposon-like sequence among different formae speciales and races of Fusarium oxysporum. Mycological Research, 1994, 98, 993-996.	2.5	16
63	Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Molecular Genetics and Genomics, 1991, 230, 449-455.	2.4	26
64	Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene, 1989, 84, 335-343.	2.2	114
65	Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosyl-polifungin. Carlsberg Research Communications, 1984, 49, 685-690.	1.8	62
66	High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Research Communications, 1984, 49, 691-702.	1.8	130
67	Genetics of carotene biosynthesis in Phycomyces. Current Genetics, 1982, 5, 5-8.	1.7	31