Ralph Witzgall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Founder Mutation in EHD1 Presents with Tubular Proteinuria and Deafness. Journal of the American Society of Nephrology: JASN, 2022, 33, 732-745.	3.0	7
2	Mesangial cells regulate the single nephron GFR and preserve the integrity of the glomerular filtration barrier: An intravital multiphoton microscopy study. Acta Physiologica, 2021, 231, e13592.	1.8	8
3	On-section correlative light and electron microscopy of large cellular volumes using STEM tomography. Methods in Cell Biology, 2021, 162, 171-203.	0.5	4
4	A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts. Journal of Cell Science, 2021, 134, .	1.2	2
5	Dual-axis STEM tomography at 200ÂkV: Setup, performance, limitations. Journal of Structural Biology, 2020, 211, 107551.	1.3	11
6	Adenovirus-Mimetic Nanoparticles: Sequential Ligand–Receptor Interplay as a Universal Tool for EnhancedIn Vitro/In VivoCell Identification. ACS Applied Materials & Interfaces, 2020, 12, 34689-34702.	4.0	14
7	Subcellular localization of the chemotherapeutic agent doxorubicin in renal epithelial cells and in tumor cells using correlative light and electron microscopy. Clinical Hemorheology and Microcirculation, 2019, 73, 157-167.	0.9	6
8	Electron microscopy of Drosophila garland cell nephrocytes: Optimal preparation, immunostaining and STEM tomography. Journal of Cellular Biochemistry, 2018, 119, 8011-8021.	1.2	10
9	Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. American Journal of Physiology - Renal Physiology, 2018, 315, F57-F73.	1.3	4
10	Golgi bypass of ciliary proteins. Seminars in Cell and Developmental Biology, 2018, 83, 51-58.	2.3	16
11	Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nature Structural and Molecular Biology, 2017, 24, 123-130.	3.6	105
12	Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7154-7159.	3.3	33
13	Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes. Cellular and Molecular Life Sciences, 2017, 74, 4573-4586.	2.4	37
14	Nail-patella syndrome. Pflugers Archiv European Journal of Physiology, 2017, 469, 927-936.	1.3	27
15	Intravital Imaging Reveals Angiotensin II–Induced Transcytosis of Albumin by Podocytes. Journal of the American Society of Nephrology: JASN, 2016, 27, 731-744.	3.0	63
16	Advanced electron microscopic techniques provide a deeper insight into the peculiar features of podocytes. American Journal of Physiology - Renal Physiology, 2015, 309, F1082-F1089.	1.3	23
17	Integration of Cistromic and Transcriptomic Analyses Identifies Nphs2, Mafb, and Magi2 as Wilms' Tumor 1 Target Genes in Podocyte Differentiation and Maintenance. Journal of the American Society of Nephrology: JASN, 2015, 26, 2118-2128.	3.0	67
18	Phosphorylation of C-terminal polycystin-2 influences the interaction with PIGEA14: A QCM study based on solid supported membranes. Biochemical and Biophysical Research Communications, 2013, 437, 532-537.	1.0	6

RALPH WITZGALL

#	Article	IF	CITATIONS
19	LMX1B is Essential for the Maintenance of Differentiated Podocytes in Adult Kidneys. Journal of the American Society of Nephrology: JASN, 2013, 24, 1830-1848.	3.0	60
20	Photochemically Active Fluorophore–DNA/RNA Conjugates for Cellular Imaging of Nucleic Acids by Readout in Electron Microscopy. ChemistryOpen, 2013, 2, 136-140.	0.9	2
21	Kidney Podocytes as Specific Targets for cyclo(RGDfC)â€Modified Nanoparticles. Small, 2012, 8, 3368-3375.	5.2	42
22	The human polycystin-2 protein represents an integral membrane protein with six membrane-spanning domains and intracellular N- and C-termini. Biochemical Journal, 2011, 433, 285-294.	1.7	10
23	Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. Journal of Cell Biology, 2011, 192, 631-645.	2.3	82
24	The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes. Experimental Cell Research, 2009, 315, 76-96.	1.2	28
25	Doxycycline accelerates renal cyst growth and fibrosis in the pcy/pcy mouse model of type 3 nephronophthisis, a form of recessive polycystic kidney disease. Histochemistry and Cell Biology, 2009, 132, 199-210.	0.8	9
26	How are podocytes affected in nail–patella syndrome?. Pediatric Nephrology, 2008, 23, 1017-1020.	0.9	13
27	Role of Transcription Factors in Podocytes. Nephron Experimental Nephrology, 2007, 106, e60-e66.	2.4	18
28	The podocyte-specific inactivation of Lmx1b, Ldb1 and E2a yields new insight into a transcriptional network in podocytes. Developmental Biology, 2007, 304, 701-712.	0.9	60
29	A Truncated Polycystin-2 Protein Causes Polycystic Kidney Disease and Retinal Degeneration in Transgenic Rats. Journal of the American Society of Nephrology: JASN, 2006, 17, 2719-2730.	3.0	62
30	Polycystin-2—an intracellular or plasma membrane channel?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 371, 342-347.	1.4	28
31	New Developments in the Field of Cystic Kidney Diseases. Current Molecular Medicine, 2005, 5, 455-465.	0.6	19
32	PIGEA-14, a Novel Coiled-coil Protein Affecting the Intracellular Distribution of Polycystin-2. Journal of Biological Chemistry, 2004, 279, 35009-35016.	1.6	64
33	Use of the Tetracycline System for Inducible Protein Synthesis in the Kidney. Journal of the American Society of Nephrology: JASN, 2003, 14, 2042-2051.	3.0	13
34	Impaired endocytosis may represent an obstacle to gene therapy in polycystic kidney disease. Kidney International, 2002, 61, S132-S137.	2.6	6
35	Polycystin-2 is an intracellular calcium release channel. Nature Cell Biology, 2002, 4, 191-197.	4.6	637
36	Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell and Tissue Research, 2002, 310, 289-296.	1.5	79

RALPH WITZGALL

#	Article	IF	CITATIONS
37	The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. Journal of Clinical Investigation, 2002, 109, 1073-1082.	3.9	100
38	The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. Journal of Clinical Investigation, 2002, 109, 1073-1082.	3.9	72
39	A possible role for metalloproteinases in renal cyst development. American Journal of Physiology - Renal Physiology, 2001, 280, F540-F550.	1.3	75
40	An endocytosis defect as a possible cause of proteinuria in polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2001, 280, F244-F253.	1.3	39
41	An ever-expanding story of cyst formation. Cell and Tissue Research, 2000, 300, 361-371.	1.5	9
42	The rat Pkd2 protein assumes distinct subcellular distributions in different organs. American Journal of Physiology - Renal Physiology, 1999, 277, F914-F925.	1.3	20
43	Identification and Characterization of Polycystin-2, thePKD2 Gene Product. Journal of Biological Chemistry, 1999, 274, 28557-28565.	1.6	329
44	Kid-1 expression is high in differentiated renal proximal tubule cells and suppressed in cyst epithelia. American Journal of Physiology - Renal Physiology, 1998, 275, F928-F937.	1.3	5