
Akinori Matsushika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paenibacillus glycanilyticus subsp. hiroshimensis subsp. nov., isolated from leaf soil collected in Japan. Archives of Microbiology, 2021, 203, 1787-1793.	1.0	1
2	lsolation, draft genome sequencing and identification of Enterobacter roggenkampii CCI9. Journal of Genomics, 2021, 9, 1-5.	0.6	0
3	Application of Pichia kudriavzevii NBRC1279 and NBRC1664 to Simultaneous Saccharification and Fermentation for Bioethanol Production. Fermentation, 2021, 7, 83.	1.4	6
4	The Transcription Factor Gene tclB2 Regulates Mannanolytic Enzyme Production in the Fungus Talaromyces cellulolyticus. Applied Biochemistry and Biotechnology, 2021, 193, 3163-3172.	1.4	1
5	Draft Genome Sequence of Klebsiella pneumoniae subsp. <i>pneumoniae</i> CCl2, Isolated from Leaf Soil. Microbiology Resource Announcements, 2021, 10, e0034321.	0.3	1
6	Comparison of <i>Spathaspora passalidarum</i> and recombinant <i>Saccharomyces cerevisiae</i> for integration of first- and second-generation ethanol production. FEMS Yeast Research, 2021, 21, .	1.1	7
7	Draft Genome Sequence of <i>Enterobacter oligotrophicus</i> CCA3, Isolated from Leaf Soil. Microbiology Resource Announcements, 2021, 10, .	0.3	1
8	loGAS1, a GPI-Anchored Protein Derived from Issatchenkia orientalis, Confers Tolerance of Saccharomyces cerevisiae to Multiple Acids. Applied Biochemistry and Biotechnology, 2020, 190, 1349-1359.	1.4	8
9	The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus. Applied Biochemistry and Biotechnology, 2020, 190, 1360-1370.	1.4	3
10	Characterization of an NAD(P)+-dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140476.	1.1	3
11	ldentification and functional characterization of NAD(P) + â€dependent meso â€diaminopimelate dehydrogenase from Numidum massiliense. MicrobiologyOpen, 2020, 9, e1059.	1.2	5
12	Application of a Pyruvate-Producing Escherichia coli Strain LAFCPCPt-accBC-aceE: A Case Study for d-Lactate Production. Fermentation, 2020, 6, 70.	1.4	3
13	Substrate recognition by a bifunctional GH30â€7 xylanase B from TalaromycesÂcellulolyticus. FEBS Open Bio, 2020, 10, 1180-1189.	1.0	13
14	Draft genome sequence of Deinococcus sp. KR-1, a potential strain for palladium-leaching. Journal of Genomics, 2020, 8, 21-24.	0.6	1
15	Deinococcus kurensis sp. nov., isolated from pond water collected in Japan. Archives of Microbiology, 2020, 202, 1757-1762.	1.0	9
16	Crystal structure of GH30-7 endoxylanase C from the filamentous fungus <i>Talaromyces cellulolyticus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 341-349.	0.4	6
17	Performance of <i>Burkholderia multivorans</i> CCA53 for ethyl red degradation. Journal of General and Applied Microbiology, 2020, 66, 220-227.	0.4	0
18	High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains. Enzyme and Microbial Technology, 2019, 129, 109359.	1.6	14

Akinori Matsushika

#	Article	IF	CITATIONS
19	<i>Enterobacter oligotrophica</i> sp. nov., a novel oligotroph isolated from leaf soil. MicrobiologyOpen, 2019, 8, e00843.	1.2	19
20	GH30-7 Endoxylanase C from the Filamentous Fungus <i>Talaromyces cellulolyticus</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	7
21	Structural and functional characterization of a bifunctional GH30-7 xylanase B from the filamentous fungus Talaromyces cellulolyticus. Journal of Biological Chemistry, 2019, 294, 4065-4078.	1.6	40
22	Mode of Action of GH30-7 Reducing-End Xylose-Releasing Exoxylanase A (Xyn30A) from the Filamentous Fungus Talaromyces cellulolyticus. Applied and Environmental Microbiology, 2019, 85, .	1.4	18
23	Electrospray multistage mass spectrometry in the negative ion mode for the unambiguous molecular and structural characterization of acidic hydrolysates from 4â€ <i>O</i> â€methylglucuronoxylan generated by endoxylanases. Journal of Mass Spectrometry, 2019, 54, 213-221.	0.7	8
24	Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in <i>Saccharomyces cerevisiae</i> IR-2 for high-temperature ethanol production. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 879-891.	1.4	28
25	Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress. Journal of Bioscience and Bioengineering, 2017, 124, 164-170.	1.1	14
26	Complete Genome Sequence of Ureibacillus thermosphaericus A1, a Thermophilic Bacillus Isolated from Compost. Genome Announcements, 2017, 5, .	0.8	5
27	Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress. PLoS ONE, 2016, 11, e0161888.	1.1	25
28	Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing d-xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology Letters, 2015, 37, 1973-1982.	1.1	27
29	Increased ethanol production by deletion of <i>HAP4</i> in recombinant xylose-assimilating <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1623-1631.	1.4	7
30	Draft Genome Sequence of Kluyveromyces marxianus Strain DMB1, Isolated from Sugarcane Bagasse Hydrolysate. Genome Announcements, 2014, 2, .	0.8	31
31	Influence of individual HXT transporters in xylose fermentation by recombinant Saccharomyces cerevisiae strains. BMC Proceedings, 2014, 8, P209.	1.8	0
32	Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories, 2014, 13, 16.	1.9	56
33	Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Bioprocess and Biosystems Engineering, 2014, 37, 749-754.	1.7	15
34	Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1773-1781.	1.4	5
35	Effect of Fermentation Conditions on the Flocculation of Recombinant Saccharomyces cerevisiae Capable of Co-fermenting Glucose and Xylose. Applied Biochemistry and Biotechnology, 2014, 174, 623-631.	1.4	1
36	Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial Technology, 2014, 63, 13-20.	1.6	64

#	Article	IF	CITATIONS
37	Characterization of a Recombinant Flocculent Saccharomyces cerevisiae Strain that Co-ferments Glucose and Xylose: I. Influence of the Ratio of Glucose/Xylose on Ethanol Production. Applied Biochemistry and Biotechnology, 2013, 169, 712-721.	1.4	5
38	Comparison of the Performance of Eight Recombinant Strains of Xylose-FermentingSaccharomyces cerevisiaeas to Bioethanol Production from Rice Straw Enzymatic Hydrolyzate. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1579-1582.	0.6	4
39	Bioethanol Production from Lignocellulosic Biomass by a Novel <i>Kluyveromyces marxianus</i> Strain. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1505-1510.	0.6	65
40	Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. Journal of Bioscience and Bioengineering, 2013, 116, 551-554.	1.1	23
41	Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology, 2013, 67, 241-243.	0.3	24
42	Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e69005.	1.1	44
43	Characterization of a Recombinant Flocculent Saccharomyces cerevisiae Strain That Co-Ferments Glucose and Xylose: II. Influence of pH and Acetic Acid on Ethanol Production. Applied Biochemistry and Biotechnology, 2012, 168, 2094-2104.	1.4	15
44	Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2012, 51, 16-25.	1.6	67
45	Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae. Microbiology Monographs, 2012, , 137-160.	0.3	2
46	Ethanol Production from Xylo-oligosaccharides by Xylose-Fermenting <i>Saccharomyces cerevisiae</i> Expressing β-Xylosidase. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1140-1146.	0.6	23
47	Bioethanol Production by Pichia stipitis from Enzymatic Hydrolysates of Corncob-based Spent Mushroom Substrate. Food Science and Technology Research, 2011, 17, 267-272.	0.3	15
48	Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Enzyme and Microbial Technology, 2011, 48, 466-471.	1.6	17
49	Effect of Initial Cell Concentration on Ethanol Production by Flocculent Saccharomyces cerevisiae with Xylose-Fermenting Ability. Applied Biochemistry and Biotechnology, 2010, 162, 1952-1960.	1.4	18
50	Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. Journal of Bioscience and Bioengineering, 2010, 110, 102-105.	1.1	15
51	Efficient Bioethanol Production by a Recombinant Flocculent <i>Saccharomyces cerevisiae</i> Strain with a Genome-Integrated NADP ⁺ -Dependent Xylitol Dehydrogenase Gene. Applied and Environmental Microbiology, 2009, 75, 3818-3822.	1.4	62
52	Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Applied Microbiology and Biotechnology, 2009, 84, 37-53.	1.7	383
53	Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresource Technology, 2009, 100, 2392-2398.	4.8	116
54	Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2008, 81, 243-255.	1.7	104

Akinori Matsushika

#	Article	IF	CITATIONS
55	Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. Journal of Bioscience and Bioengineering, 2008, 105, 296-299.	1.1	94
56	Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Journal of Bioscience and Bioengineering, 2008, 106, 306-309.	1.1	64
57	Characterization of Circadian-Associated Pseudo-Response Regulators: II. The Function of PRR5 and Its Molecular Dissection inArabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 2007, 71, 535-544.	0.6	14
58	Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes inArabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 2007, 71, 527-534.	0.6	24
59	In VitroAnalysis of His-Asp Phosphorelays inAspergillus nidulans: The First Direct Biochemical Evidence for the Existence of His-Asp Phosphotransfer Systems in Filamentous Fungi. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2493-2502.	0.6	25
60	Molecular Dissection of the Promoter of the Light-Induced and Circadian-Controlled APRR9 Gene Encoding a Clock-Associated Component of Arabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 2005, 69, 382-390.	0.6	30
61	Circadian-Associated Rice Pseudo Response Regulators (OsPRRs): Insight into the Control of Flowering Time. Bioscience, Biotechnology and Biochemistry, 2005, 69, 410-414.	0.6	106
62	A Link between Circadian-Controlled bHLH Factors and the APRR1/TOC1 Quintet in Arabidopsis thaliana. Plant and Cell Physiology, 2003, 44, 619-629.	1.5	147
63	Characterization of the APRR9 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana. Plant and Cell Physiology, 2003, 44, 1237-1245.	1.5	66
64	Cell Autonomous Circadian Waves of the APRR1/TOC1 Quintet in an Established Cell Line of Arabidopsis thaliana. Plant and Cell Physiology, 2003, 44, 360-365.	1.5	45
65	Aberrant Expression of the Light-Inducible and Circadian-Regulated APRR9 Gene Belonging to the Circadian-Associated APRR1/TOC1 Quintet Results in the Phenotype of Early Flowering in Arabidopsis thaliana. Plant and Cell Physiology, 2002, 43, 833-843.	1.5	70
66	The APRR1/TOC1 Quintet Implicated in Circadian Rhythms of Arabidopsis thaliana: II. Characterization with CCA1-Overexpressing Plants. Plant and Cell Physiology, 2002, 43, 118-122.	1.5	112
67	The APRR1/TOC1 Quintet Implicated in Circadian Rhythms of Arabidopsis thaliana: I. Characterization with APRR1-Overexpressing Plants. Plant and Cell Physiology, 2002, 43, 58-69.	1.5	210
68	Light Response of the Circadian Waves of the APRR1/TOC1 Quintet: When Does the Quintet Start Singing Rhythmically in Arabidopsis?. Plant and Cell Physiology, 2001, 42, 334-339.	1.5	81
69	Characterization of Three Putative Sub-Domains in the Signal-Input Domain of the ArcB Hybrid Sensor in Escherichia coli. Journal of Biochemistry, 2000, 127, 855-860.	0.9	15
70	Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudo-Response Regulators in Arabidopsis thaliana : Insight into the Plant Circadian Clock. Plant and Cell Physiology, 2000, 41, 1002-1012.	1.5	373
71	Mutational Analysis of the Histidine-containing Phosphotransfer (HPt) Signaling Domain of the ArcB Sensor inEscherichia coli. Bioscience, Biotechnology and Biochemistry, 1998, 62, 2236-2238.	0.6	14
72	The Structure and Function of the Histidine-Containing Phosphotransfer (HPt) Signaling Domain of the Escherichia coli ArcB Sensor. Journal of Biochemistry, 1998, 124, 440-445.	0.9	21

#	Article	IF	CITATIONS
73	A Dual-Signaling Mechanism Mediated by the ArcB Hybrid Sensor Kinase Containing the Histidine-Containing Phosphotransfer Domain in <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 3973-3977.	1.0	43