William F Sensakovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4925109/publications.pdf

Version: 2024-02-01

777949 620720 73 721 13 26 citations h-index g-index papers 73 73 73 1013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	U.S. Diagnostic Reference Levels and Achievable Doses for 10 Pediatric CT Examinations. Radiology, 2022, 302, 164-174.	3.6	29
2	Contrast-enhanced Mammography: How Does It Work?. Radiographics, 2021, 41, 829-839.	1.4	14
3	Fetal Dosimetry at CT: A Primer. Radiographics, 2020, 40, 1061-1070.	1.4	20
4	Sample content of kinesthetic educational training: Reducing scattered Xâ€ray exposures to interventional physician operators of fluoroscopy. Journal of Applied Clinical Medical Physics, 2020, 21, 196-208.	0.8	6
5	Harmonization of radiomic feature variability resulting from differences in CT image acquisition and reconstruction: assessment in a cadaveric liver. Physics in Medicine and Biology, 2020, 65, 205008.	1.6	14
6	Dynamic contrast-enhanced CT for the assessment of tumour response in malignant pleural mesothelioma: a pilot study. European Radiology, 2019, 29, 682-688.	2.3	14
7	The Association between Transcatheter Aortic Valve Replacement (TAVR) Approach and New-Onset Bundle Branch Blocks. Cardiology and Therapy, 2019, 8, 357-364.	1.1	2
8	Protocol Optimization in the Era of Informatics. Journal of the American College of Radiology, 2019, 16, 1121-1122.	0.9	0
9	The Effect of Thoracic Kyphosis on the Midfacial Skeleton of Adults. FASEB Journal, 2019, 33, 612.3.	0.2	О
10	Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis. Technology in Cancer Research and Treatment, 2018, 17, 153303461774941.	0.8	2
11	GammaKnife versus <scp>VMAT</scp> radiosurgery plan quality for many brain metastases. Journal of Applied Clinical Medical Physics, 2018, 19, 159-165.	0.8	21
12	Troubleshooting Image Quality and Other Problems by Using the DICOM Header: RadioGraphics Fundamentals Online Presentation. Radiographics, 2018, 38, 847-848.	1.4	3
13	SPECT/CT imageâ€based dosimetry for Yttriumâ€90 radionuclide therapy: Application to treatment response. Journal of Applied Clinical Medical Physics, 2018, 19, 435-443.	0.8	9
14	CT Radiation Dose Reduction in Robot-assisted Pediatric Spinal Surgery. Spine, 2017, 42, E417-E424.	1.0	30
15	The Link Between Radiation Optimization and Quality. Journal of the American College of Radiology, 2017, 14, 850-851.	0.9	3
16	Role of Medical Physicists in the Diagnostic Residency Training Program. Journal of the American College of Radiology, 2017, 14, 119-121.	0.9	2
17	Occupational Dose and Dose Limits: Experience in a Large Multisite Hospital System. Journal of the American College of Radiology, 2016, 13, 649-655.	0.9	6
18	Bariatric CT Imaging: Challenges and Solutions. Radiographics, 2016, 36, 1076-1086.	1.4	41

#	Article	IF	CITATIONS
19	3D Quantitation of Sinonasal Inflammation Correlates with Symptoms and Disease-Specific Quality of Life in Patients with Rhinosinusitis. Journal of Allergy and Clinical Immunology, 2016, 137, AB186.	1.5	0
20	Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs. Pediatric Radiology, 2016, 46, 1606-1613.	1.1	10
21	What Is the CT Dose Report Sheet and Why Is It Useful?. American Journal of Roentgenology, 2016, 207, 929-930.	1.0	3
22	Impact of an Infant Transport Mattress on CT Dose and Image Quality. Academic Radiology, 2016, 23, 209-219.	1.3	3
23	TU-FG-206-02: Medical Physics Imaging Informatics in the Classroom and in Practice. Medical Physics, 2016, 43, 3760-3760.	1.6	1
24	TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates. Medical Physics, 2016, 43, 3893-3894.	1.6	0
25	MO-FG-206-00: Practical Statistics for Medical Physicists. Medical Physics, 2016, 43, 3714-3714.	1.6	0
26	Computerâ€assisted staging of chronic rhinosinusitis correlates with symptoms. International Forum of Allergy and Rhinology, 2015, 5, 637-642.	1.5	28
27	Regarding Fat Suppression in MRI, When Are Spectral Techniques Preferred Over STIR, and Vice Versa?. American Journal of Roentgenology, 2015, 205, W231-W232.	1.0	2
28	WEâ€Eâ€201â€01: Use and Abuse of Common Statistics in Radiological Physics. Medical Physics, 2015, 42, 3683-3683.	1.6	O
29	WEâ€Eâ€201â€00: Practical Statistics for Medical Physicists. Medical Physics, 2015, 42, 3683-3683.	1.6	О
30	ACR testing of a dedicated head SPECT unit. Journal of Applied Clinical Medical Physics, 2014, 15, 1-10.	0.8	9
31	SU-E-E-07: When the Old Ways Are the Best Ways: In Defense of Didactic Training. Medical Physics, 2014, 41, 126-126.	1.6	O
32	SU-E-J-262: Segmentation in Therapy: Impact of Display. Medical Physics, 2014, 41, 218-218.	1.6	O
33	MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy. Medical Physics, 2014, 41, 441-442.	1.6	О
34	SU-C-134-05: CT Contrast Media: Impact of Scanner Parameters On Enhancement and Detectability. Medical Physics, 2013, 40, 96-96.	1.6	1
35	Three-Dimensional Stereoscopic Volume Rendering of Malignant Pleural Mesothelioma. International Surgery, 2012, 97, 65-70.	0.0	2
36	Registration of T2-weighted and diffusion-weighted MR images of the prostate: comparison between manual and landmark-based methods. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
37	Medical Physics, 2012, 39, 4679-4690.	1.6	24
38	A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity. Medical Physics, 2012, 39, 2239-2248.	1.6	26
39	SU-E-T-68: Helical Tomotherapy DQA with ArcCHECK: Sensitivity to Possible Delivery Errors. Medical Physics, 2012, 39, 3718-3718.	1.6	0
40	Techniques for the Automated Segmentation of Lung in Thoracic Computed Tomography Scans. Advances in Bioinformatics and Biomedical Engineering Book Series, 2012, , 145-158.	0.2	0
41	SU-E-J-65: Feasibility Study of Backscatter Imaging for Image-Guided Radiotherapy. Medical Physics, 2012, 39, 3667-3667.	1.6	0
42	SU-E-J-18: Evaluation of the Effectiveness of Compression Methods in SBRT for Lung. Medical Physics, 2012, 39, 3656-3656.	1.6	0
43	Computerized segmentation and measurement of malignant pleural mesothelioma. Medical Physics, 2011, 38, 238-244.	1.6	51
44	Quantitative Measurement of Lung Reexpansion in Malignant Pleural Mesothelioma Patients Undergoing Pleurectomy/Decortication. Academic Radiology, 2011, 18, 294-298.	1.3	14
45	Characterization of mesothelioma and tissues present in contrastâ€enhanced thoracic CT scans. Medical Physics, 2011, 38, 942-947.	1.6	21
46	SU-E-J-93: Perfusion CT and Tumor Response for Patients with Mesothelioma. Medical Physics, 2011, 38, 3463-3463.	1.6	0
47	SU-E-J-96: Prognostic Value of Automatically Segmented Lung Volumes during Chemotherapy for Patients with Mesothelioma. Medical Physics, 2011, 38, 3464-3464.	1.6	0
48	SU-E-I-03: Evaluation of CT Texture Feature Changes Following Deformable Lung Registration. Medical Physics, 2011, 38, 3396-3396.	1.6	0
49	Automated segmentation of mucosal change in rhinosinusitis patients. Proceedings of SPIE, 2010, , .	0.8	3
50	The influence of initial outlines on manual segmentation. Medical Physics, 2010, 37, 2153-2158.	1.6	3
51	WE-B-201B-06: Characterization of Mesothelioma and Tissues Present in Contrast-Enhanced Chest CT Scans. Medical Physics, 2010, 37, 3417-3418.	1.6	0
52	Analysis of Reader Subjective Ratings of Nodule Characteristics in the Lung Image Database Consortium (LIDC) Database: Experience with the First 89 Cases, 2009, , .		0
53	Temporal subtraction in chest radiography: Mutual information as a measure of image quality. Medical Physics, 2009, 36, 5675-5682.	1.6	2
54	A modified gradient correlation filter for image segmentation: Application to airway and bowel. Medical Physics, 2009, 36, 480-485.	1.6	4

#	Article	IF	Citations
55	SU-FF-I-11: Inter-Observer Variability of Mesothelioma Area Measurements On CT Scans. Medical Physics, 2009, 36, 2436-2436.	1.6	0
56	WE-E-304A-06: The Influence of Initial Outlines On Observers. Medical Physics, 2009, 36, 2787-2787.	1.6	0
57	A general method for the identification and repair of concavities in segmented medical images. , 2008, , .		4
58	Discreteâ€space versus continuousâ€space lesion boundary and area definitions. Medical Physics, 2008, 35, 4070-4078.	1.6	4
59	Magnetic Resonance Imaging of the Lung: Automated Segmentation Methods. , 2008, , 219-234.		4
60	SUâ€GGâ€Iâ€87: Inconsistencies in Discrete Space and Continuous Space Lesion Boundary and Area Definitions. Medical Physics, 2008, 35, 2661-2662.	1.6	0
61	SUâ€GGâ€Iâ€02: Evolution of Adrenal Gland Perfusion with Antiâ€Angiogenic Therapy: A CTâ€Based Approach. Medical Physics, 2008, 35, 2643-2643.	1.6	0
62	Twoâ€dimensional extrapolation methods for texture analysis on CT scans. Medical Physics, 2007, 34, 3465-3472.	1.6	5
63	Extrapolation techniques for textural characterization of tissue in medical images. , 2007, , .		0
64	TUâ€D‣100Jâ€05: Assessment of Mesothelioma Tumor Response: Correlation of Tumor Thickness and Tumor Area. Medical Physics, 2007, 34, 2554-2554.	1.6	1
65	SU-FF-I-04: An External Energy Field for Hemithoracic-Cavity Segmentation Using Deformable Contours. Medical Physics, 2007, 34, 2338-2338.	1.6	O
66	SU-FF-I-05: Evolution of Adrenal Gland Perfusion with Anti-Angiogenic Therapy: A CT-Based Study. Medical Physics, 2007, 34, 2338-2339.	1.6	0
67	Medical Physics, 2006, 33, 3085-3093.	1.6	17
68	TU-FF-A4-05: Temporal Subtraction of Lateral Chest Radiographs. Medical Physics, 2006, 33, 2223-2223.	1.6	0
69	TU-D-330A-07: A Fast Pseudo-1D Active Contour for Medical Image Segmentation. Medical Physics, 2006, 33, 2196-2197.	1.6	0
70	Automated lung segmentation in magnetic resonance images. , 2005, , .		0
71	Automated matching of temporally sequential CT sections. Medical Physics, 2004, 31, 3417-3424.	1.6	9
72	Automated lung segmentation for thoracic CT. Academic Radiology, 2004, 11, 1011-1021.	1.3	254

#	Article	IF	CITATIONS
73	Techniques for the Automated Segmentation of Lung in Thoracic Computed Tomography Scans. , 0, , 675-687.		O