Siyan Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4924714/siyan-zhao-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67	2,799	25	52
papers	citations	h-index	g-index
73 ext. papers	3,410 ext. citations	8.1 avg, IF	5.58 L-index

#	Paper	IF	Citations
67	Exploration of the biotransformation of phenanthrene degradation coupled with methanogensis by metabolites and enzyme analyses. <i>Environmental Pollution</i> , 2021 , 293, 118491	9.3	1
66	Partnering of anammox and denitrifying bacteria benefits anammox's recovery from starvation and complete nitrogen removal <i>Science of the Total Environment</i> , 2021 , 815, 152696	10.2	1
65	Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. <i>Environmental Science & Environmental Science & Env</i>	10.3	13
64	Potential Role of Methanogens in Microbial Reductive Dechlorination of Organic Chlorinated Pollutants. <i>Environmental Science & Environmental Science </i>	10.3	6
63	Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides. <i>Bioresource Technology</i> , 2021 , 328, 124826	11	7
62	Fixed nitrogen removal mechanisms associated with sulfur cycling in tropical wetlands. <i>Water Research</i> , 2021 , 189, 116619	12.5	23
61	Anaerobic biodegradation of phenanthrene by a newly isolated nitrate-dependent Achromobacter denitrificans strain PheN1 and exploration of the biotransformation processes by metabolite and genome analyses. <i>Environmental Microbiology</i> , 2021 , 23, 908-923	5.2	5
60	Identification of Reductive Dehalogenases That Mediate Complete Debromination of Penta- and Tetrabrominated Diphenyl Ethers in spp. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0060221	4.8	5
59	Acceleration of polychlorinated biphenyls remediation in soil via sewage sludge amendment. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126630	12.8	6
58	Debromination of TetraBromoBisphenol-A (TBBPA) depicting the metabolic versatility of Dehalococcoides. <i>Journal of Hazardous Materials</i> , 2021 , 419, 126408	12.8	3
57	Environmental occurrence and remediation of emerging organohalides: A review. <i>Environmental Pollution</i> , 2021 , 290, 118060	9.3	5
56	Microbial Debromination of Polybrominated Diphenyl Ethers by -Containing Enrichment Culture <i>Frontiers in Microbiology</i> , 2021 , 12, 806795	5.7	O
55	Differentiating closely affiliated lineages by a novel genetic marker identified via computational pangenome analysis <i>Applied and Environmental Microbiology</i> , 2021 , AEM0218121	4.8	O
54	Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2020 , 47, 543-550	4.2	7
53	Abundance of organohalide respiring bacteria and their role in dehalogenating antimicrobials in wastewater treatment plants. <i>Water Research</i> , 2020 , 181, 115893	12.5	12
52	Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of G117 and recombinant 1A1. <i>Metabolic Engineering Communications</i> , 2020 , 11, e00137	6.5	9
51	Strain GEO12 Has a Natural Tolerance to Chloroform Inhibition. <i>Environmental Science & Enp;</i> Technology, 2020 , 54, 8750-8759	10.3	5

(2017-2020)

50	16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	7
49	Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	4
48	Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. <i>Water Research</i> , 2020 , 185, 116300	12.5	41
47	Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	5
46	Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. <i>Science of the Total Environment</i> , 2019 , 666, 368-376	10.2	33
45	Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	10
44	Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 1255-1265	5.7	19
43	Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	6
42	Unique genetic cassettes in a contribute to simultaneous conversion of cellulose and monosugars into butanol. <i>Science Advances</i> , 2018 , 4, e1701475	14.3	28
41	Reductive Debromination of Polybrominated Diphenyl Ethers - Microbes, Processes and Dehalogenases. <i>Frontiers in Microbiology</i> , 2018 , 9, 1292	5.7	25
40	Growth of Dehalococcoides mccartyi species in an autotrophic consortium producing limited acetate. <i>Biodegradation</i> , 2018 , 29, 487-498	4.1	4
39	Strategy for the Rapid Dechlorination of Polychlorinated Biphenyls (PCBs) by Dehalococcoides mccartyi Strains. <i>Environmental Science & Environmental </i>	10.3	17
38	Characterization and genome analysis of a butanol-isopropanol-producing strain BGS1. <i>Biotechnology for Biofuels</i> , 2018 , 11, 280	7.8	26
37	Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture. <i>Applied Microbiology and Biotechnology</i> , 2017 , 101, 5481-5492	5.7	6
36	Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. <i>Environmental Microbiology</i> , 2017 , 19, 2906-2915	5.2	16
35	Genomic characterization of Dehalococcoides mccartyi strain 11a5 reveals a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	12
34	Clostridium species strain BOH3 tolerates and transforms inhibitors from horticulture waste hydrolysates. <i>Applied Microbiology and Biotechnology</i> , 2017 , 101, 6289-6297	5.7	5
33	Quantitative proteome profiles help reveal efficient xylose utilization mechanisms in solventogenic Clostridium sp. strain BOH3. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 1959-1969	4.9	5

32	Production of 2,3-Butanediol from Sucrose by a Klebsiella Species. <i>Bioenergy Research</i> , 2016 , 9, 15-22	3.1	13
31	Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 1702-10	4.9	13
30	Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. <i>Bioresource Technology</i> , 2016 , 202, 214-9	11	27
29	Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds. <i>Water Research</i> , 2016 , 106, 330-338	12.5	35
28	Simultaneous saccharification and fermentation of hemicellulose to butanol by a non-sporulating Clostridium species. <i>Bioresource Technology</i> , 2016 , 219, 430-438	11	16
27	Genomic Characterization of Dehalococcoides mccartyi Strain JNA That Reductively Dechlorinates Tetrachloroethene and Polychlorinated Biphenyls. <i>Environmental Science & Dechnology</i> , 2015 , 49, 14319-25	10.3	20
26	Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. <i>Biotechnology for Biofuels</i> , 2015 , 8, 166	7.8	24
25	A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a. <i>Scientific Reports</i> , 2015 , 5, 15204	4.9	11
24	Detoxification of 1,1,2-trichloroethane to ethene by desulfitobacterium and identification of its functional reductase gene. <i>PLoS ONE</i> , 2015 , 10, e0119507	3.7	18
23	Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 4771-8	4.8	51
22	Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12103-8	11.5	107
21	Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. <i>Bioresource Technology</i> , 2014 , 155, 220-8	11	40
20	DNA microarrays on ultraviolet-modified surfaces for speciation of bacteria. <i>Analytical Biochemistry</i> , 2014 , 447, 156-61	3.1	3
19	Draft Genome Sequence of Polychlorinated Biphenyl-Dechlorinating Dehalococcoides mccartyi Strain SG1, Which Carries a Circular Putative Plasmid. <i>Genome Announcements</i> , 2014 , 2,		5
18	A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. <i>Environmental Microbiology</i> , 2014 , 16, 3387-97	5.2	46
17	Production, Purification, and Characterization of FAmylase from Solventogenic Clostridium sp. BOH3. <i>Bioenergy Research</i> , 2014 , 7, 132-141	3.1	8
16	A Highly Efficient NADH-dependent Butanol Dehydrogenase from High-butanol-producing Clostridium sp. BOH3. <i>Bioenergy Research</i> , 2013 , 6, 240-251	3.1	18
15	Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. <i>Environmental Science & Environmental Science & En</i>	10.3	34

LIST OF PUBLICATIONS

14	Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. <i>Environmental Microbiology</i> , 2013 , 15, 2293-305	5.2	32
13	Production, Purification, and Characterization of a Xylooligosaccharides-forming Xylanase from High-butanol-producing Strain Clostridium sp. BOH3. <i>Bioenergy Research</i> , 2013 , 6, 448-457	3.1	15
12	Isolation of Acetobacterium sp. strain AG, which reductively debrominates octa- and pentabrominated diphenyl ether technical mixtures. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 1110-7	4.8	38
11	Oligopeptides functionalized surface plasmon resonance biosensors for detecting thiacloprid and imidacloprid. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 271-276	11.8	25
10	Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. <i>ISME Journal</i> , 2011 , 5, 1014-24	11.9	49
9	Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. <i>ISME Journal</i> , 2010 , 4, 1020-30	11.9	66
8	Reductive debromination of polybrominated diphenyl ethers by anaerobic bacteria from soils and sediments. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 794-802	4.8	112
7	Isolation and characterization of "Dehalococcoides" sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 5910)- 8 ^{4.8}	87
6	Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2847-53	4.8	154
5	Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). <i>Environmental Science & Environmental Science & Environmental Manager</i> , 2006, 40, 4429-34	10.3	279
4	Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. <i>Environmental Microbiology</i> , 2005 , 7, 1442-50	5.2	214
3	Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. <i>Nature</i> , 2003 , 424, 62-5	50.4	409
2	Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 996-1003	4.8	284
1	Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. <i>Environmental Science & Emp;</i> Technology, 2002, 36, 3945-52	10.3	163