

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4924655/publications.pdf Version: 2024-02-01

<u>7нц</u>

#	Article	IF	CITATIONS
1	Two-Level Antibacterial Coating with Both Release-Killing and Contact-Killing Capabilities. Langmuir, 2006, 22, 9820-9823.	1.6	380
2	A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. Journal of Materials Chemistry A, 2015, 3, 21907-21921.	5.2	209
3	Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chemical Engineering Journal, 2019, 369, 1150-1160.	6.6	172
4	Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of flax/poly(lactic acid) biocomposites. Composites Part B: Engineering, 2018, 154, 56-63.	5.9	108
5	Green Synthesis of Biomass Phytic Acid-Functionalized UiO-66-NH ₂ Hierarchical Hybrids toward Fire Safety of Epoxy Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 994-1003.	3.2	106
6	Ultrafine nickel nanocatalyst-engineering of an organic layered double hydroxide towards a super-efficient fire-safe epoxy resin <i>via</i> interfacial catalysis. Journal of Materials Chemistry A, 2018, 6, 8488-8498.	5.2	101
7	Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. Composites Science and Technology, 2020, 188, 107988.	3.8	94
8	Bimetallic metal-organic frameworks and graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: A novel carbonization mechanism. Carbon, 2019, 153, 407-416.	5.4	91
9	Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application. Applied Energy, 2013, 106, 321-327.	5.1	86
10	Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Composites Part B: Engineering, 2018, 138, 101-112.	5.9	79
11	Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Composites Part B: Engineering, 2022, 233, 109663.	5.9	78
12	Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Composites Part B: Engineering, 2020, 188, 107881.	5.9	77
13	Bioinspired polydopamine-induced assembly of ultrafine Fe(OH) ₃ nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polymer Chemistry, 2017, 8, 3926-3936.	1.9	69
14	Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Composites Science and Technology, 2013, 82, 1-7.	3.8	63
15	A novel oligomer containing DOPO and ferrocene groups: Synthesis, characterization, and its application in fire retardant epoxy resin. Polymer Degradation and Stability, 2018, 156, 111-124.	2.7	63
16	Interfacial engineering of layered double hydroxide toward epoxy resin with improved fire safety and mechanical property. Composites Part B: Engineering, 2018, 152, 336-346.	5.9	58
17	Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression. Chemical Engineering Journal, 2019, 378, 122046.	6.6	54
18	Natural halloysite nanotube based functionalized nanohybrid assembled via phosphorus-containing slow release method: A highly efficient way to impart flame retardancy to polylactide. European Polymer Journal, 2017, 93, 458-470.	2.6	51

Zhi Li

#	Article	IF	CITATIONS
19	Synthesis of a hyperbranched poly(phosphamide ester) oligomer and its high-effective flame retardancy and accelerated nucleation effect in polylactide composites. Polymer Degradation and Stability, 2014, 110, 104-112.	2.7	50
20	Influence of the Characteristics of Expandable Graphite on the Morphology, Thermal Properties, Fire Behaviour and Compression Performance of a Rigid Polyurethane Foam. Polymers, 2019, 11, 168.	2.0	50
21	Effect of phytic acid–modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system. Fire and Materials, 2018, 42, 213-220.	0.9	49
22	Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chemical Engineering Journal, 2020, 400, 125942.	6.6	49
23	Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin. Polymer Degradation and Stability, 2018, 157, 119-130.	2.7	47
24	Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials. Nano-Micro Letters, 2020, 12, 173.	14.4	47
25	A facile approach towards large-scale synthesis of hierarchically nanoporous SnO2@Fe2O3 0D/1D hybrid and its effect on flammability, thermal stability and mechanical property of flexible poly(vinyl) Tj ETQq1	1 0. 784 314	rg₿ ढ /Overlo
26	Effect of N,N′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polymer Degradation and Stability, 2016, 127, 2-10.	2.7	33
27	Construction of a novel three-in-one biomass based intumescent fire retardant through phosphorus functionalized metal-organic framework and β-cyclodextrin hybrids in achieving fire safe epoxy. Composites Communications, 2021, 23, 100594.	3.3	31
28	Nano-architectured mesoporous silica decorated with ultrafine Co3O4 toward an efficient way to delaying ignition and improving fire retardancy of polystyrene. Materials and Design, 2017, 129, 69-81.	3.3	30
29	Functional organoclay with high thermal stability and its synergistic effect on intumescent flame retardant polypropylene. Applied Clay Science, 2017, 143, 192-198.	2.6	30
30	Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polymer Chemistry, 2017, 8, 6309-6318.	1.9	30
31	Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review. European Polymer Journal, 2020, 138, 109973.	2.6	30
32	High Thermoelectric Performance in Chalcopyrite Cu _{1–<i>x</i>} Ag _{<i>x</i>} GaTe ₂ –ZnTe: Nontrivial Band Structure and Dynamic Doping Effect. Journal of the American Chemical Society, 2022, 144, 9113-9125.	6.6	29
33	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2117-2124.	2.0	28
34	Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system. Journal of Thermal Analysis and Calorimetry, 2016, 125, 321-329.	2.0	24
35	Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose, 2022, 29, 5289-5303.	2.4	23
36	Selectively localized nanosilica particles at the phase interface of PS/PA6/nanosilica composites with co-continuous structure via reactive extrusion. Composites Science and Technology, 2019, 172, 125-133.	3.8	21

Zhi Li

#	Article	IF	CITATIONS
37	Spatial inhomogeneity, interfaces and complex vitrification kinetics in a network forming nanocomposite. Soft Matter, 2021, 17, 2775-2790.	1.2	20
38	Hidden Local Symmetry Breaking in Silver Diamondoid Compounds is Root Cause of Ultralow Thermal Conductivity. Advanced Materials, 2022, 34, e2202255.	11.1	20
39	Insightful investigation of smoke suppression behavior and mechanism of polystyrene with ferrocene: An important role of intermediate smoke. Fire and Materials, 2018, 42, 286-295.	0.9	17
40	Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller. Thermochimica Acta, 2019, 677, 151-161.	1.2	17
41	Preparation of shape-stabilized co-crystallized poly (ethylene glycol) composites as thermal energy storage materials. Energy Conversion and Management, 2013, 76, 101-108.	4.4	16
42	A Geometry Effect of Carbon Nanomaterials on Flame Retardancy and Mechanical Properties of Ethylene-Vinyl Acetate/Magnesium Hydroxide Composites. Polymers, 2018, 10, 1028.	2.0	15
43	Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers. Polymers, 2021, 13, 1634.	2.0	15
44	Toward a New Generation of Fireâ€Safe Energy Storage Devices: Recent Progress on Fireâ€Retardant Materials and Strategies for Energy Storage Devices. Small Methods, 2022, 6, e2101428.	4.6	12
45	High-performance carrageenan film based on carrageenan intercalated layered double hydroxide with enhanced properties: Fire safety, thermal stability and barrier effect. Composites Communications, 2018, 9, 1-5.	3.3	8
46	Phosphorous-phosphorous synergistic effect on flame retardancy, mechanically reinforce and hydrolytic resistance for PC/ABS blends. Polymer Degradation and Stability, 2021, 183, 109442.	2.7	7
47	Highly-effective Flame Retardancy of Poly(lactide) Composite Achieved Through Incorporation of Amorphous Nickel Phosphate Microparticle. Polymer-Plastics Technology and Engineering, 2014, 53, 1533-1541.	1.9	6
48	Determination of Solubility of Chromium Oxide in the CaO–SiO ₂ –Cr ₂ O ₃ Slag System at 1873 K under Moderately Reducing Conditions. ISIJ International, 2021, 61, 2340-2344.	0.6	6
49	Magnesium hydroxide microâ€whiskers as superâ€reinforcer to improve fire retardancy and mechanical property of epoxy resin. Polymer Composites, 2022, 43, 1996-2009.	2.3	6
50	Homologous Alkali Metal Copper Rare-Earth Chalcogenides A ₂ Cu _{2<i>n</i>} Ln ₄ Q _{7+<i>n</i>} (<i>n</i> = 1, 2, 3). Chemistry of Materials, 2022, 34, 3409-3422.	3.2	6
51	The Assimilation Mechanism of Mn-Al Compacts in Liquid Mg. Materials Transactions, 2010, 51, 1371-1380.	0.4	4
52	Bioinspired growth of iron derivatives on mesoporous silica: effect on thermal degradation and fire behavior of polystyrene. Nanotechnology, 2020, 31, 065601.	1.3	3