
Johnny R Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4924522/publications.pdf Version: 2024-02-01

IOHNNY P SOADES

#	Article	IF	CITATIONS
1	Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 2012, 52, 82-89.	4.2	294
2	Agronomic efficiency of NBPT as a urease inhibitor: A review. Journal of Advanced Research, 2018, 13, 19-27.	4.4	271
3	Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil. Scientific Reports, 2016, 6, 30349.	1.6	99
4	Enhanced-Efficiency Fertilizers in Nitrous Oxide Emissions from Urea Applied to Sugarcane. Journal of Environmental Quality, 2015, 44, 423-430.	1.0	70
5	Sugarcane Crop Residue Increases N2O and CO2 Emissions Under High Soil Moisture Conditions. Sugar Tech, 2014, 16, 174-179.	0.9	52
6	Dominance of bacterial ammonium oxidizers and fungal denitrifiers in the complex nitrogen cycle pathways related to nitrous oxide emission. GCB Bioenergy, 2018, 10, 645-660.	2.5	41
7	Nitrogen sources and application rates affect emissions of N2O and NH3 in sugarcane. Nutrient Cycling in Agroecosystems, 2020, 116, 329-344.	1.1	39
8	Nitrification inhibitors effectively target N ₂ Oâ€producing <i>Nitrosospira</i> spp. in tropical soil. Environmental Microbiology, 2019, 21, 1241-1254.	1.8	31
9	Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Science of the Total Environment, 2019, 650, 1476-1486.	3.9	30
10	Crop residue removal and nitrification inhibitor application as strategies to mitigate N2O emissions in sugarcane fields. Biomass and Bioenergy, 2018, 119, 206-216.	2.9	29
11	Sugarcane Straw, Soil Temperature, and Nitrification Inhibitor Impact N2O Emissions from N Fertilizer. Bioenergy Research, 2019, 12, 801-812.	2.2	11
12	Assessment of yield gaps on global grazedâ€only permanent pasture using climate binning. Global Change Biology, 2020, 26, 1820-1832.	4.2	11
13	Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102205.	1.4	9
14	DMPP mitigates N2O emissions from nitrogen fertilizer applied with concentrated and standard vinasse. Geoderma, 2021, 404, 115258.	2.3	7
15	Integrating pasture intensification and bioenergy crop expansion. , 2018, , 46-59.		1
16	Comparison of Pasture Areas Over Brazil Biomes Using Global And National Land Cover Maps. , 2019, , .		0