
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4924479/publications.pdf Version: 2024-02-01

YAN TAT MONC

#	Article	IF	CITATIONS
1	Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nature Biotechnology, 2016, 34, 320-327.	9.4	210
2	Focal activation of the feline retina via a suprachoroidal electrode array. Vision Research, 2009, 49, 825-833.	0.7	152
3	Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. Journal of NeuroInterventional Surgery, 2021, 13, 102-108.	2.0	106
4	Optimizing the Decoding of Movement Goals from Local Field Potentials in Macaque Cortex. Journal of Neuroscience, 2011, 31, 18412-18422.	1.7	100
5	Coherent neuronal ensembles are rapidly recruited when making a look-reach decision. Nature Neuroscience, 2016, 19, 327-334.	7.1	88
6	Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nature Biomedical Engineering, 2018, 2, 907-914.	11.6	77
7	Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nature Neuroscience, 2021, 24, 140-149.	7.1	77
8	Retinal Neurostimulator for a Multifocal Vision Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 425-434.	2.7	75
9	Neurobionics and the brain–computer interface: current applications and future horizons. Medical Journal of Australia, 2017, 206, 363-368.	0.8	52
10	A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation. Journal of Neural Engineering, 2009, 6, 035006.	1.8	44
11	Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nature Communications, 2021, 12, 607.	5.8	44
12	Temporal coding of reward-guided choice in the posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13492-13497.	3.3	35
13	Diamond Devices for High Acuity Prosthetic Vision. Advanced Biology, 2017, 1, e1600003.	3.0	35
14	Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable. Scientific Reports, 2018, 8, 8427.	1.6	31
15	Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Frontiers in Neural Circuits, 2019, 13, 15.	1.4	31
16	Competition for Visual Selection in the Oculomotor System. Journal of Neuroscience, 2011, 31, 9298-9306.	1.7	29
17	A training platform for many-dimensional prosthetic devices using a virtual reality environment. Journal of Neuroscience Methods, 2015, 244, 68-77.	1.3	29
18	7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. NeuroImage, 2018, 164, 214-229.	2.1	27

#	Article	IF	CITATIONS
19	Sparse model-based estimation of functional dependence in high-dimensional field and spike multiscale networks. Journal of Neural Engineering, 2019, 16, 056022.	1.8	24
20	The ovine motor cortex: A review of functional mapping and cytoarchitecture. Neuroscience and Biobehavioral Reviews, 2017, 80, 306-315.	2.9	23
21	Multiscale modeling and decoding algorithms for spike-field activity. Journal of Neural Engineering, 2019, 16, 016018.	1.8	22
22	Neural Responses to Multielectrode Stimulation of Healthy and Degenerate Retina. , 2017, 58, 3770.		21
23	Prediction of cortical responses to simultaneous electrical stimulation of the retina. Journal of Neural Engineering, 2017, 14, 016006.	1.8	18
24	CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis. Journal of Neural Engineering, 2019, 16, 026025.	1.8	18
25	Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimulation, 2021, 14, 741-750.	0.7	17
26	Utilizing movement synergies to improve decoding performance for a brain machine interface. , 2013, 2013, 289-92.		16
27	Spectral distribution of local field potential responses to electrical stimulation of the retina. Journal of Neural Engineering, 2016, 13, 036003.	1.8	15
28	Tissue response to a chronically implantable wireless, intracortical visual prosthesis (Gennaris) Tj ETQq0 0 0 rgB	T /Overloc 1.8	k 10 Tf 50 382 14
29	Microelectronic Retinal Prosthesis: II. Use of High-Voltage CMOS in Retinal Neurostimulators. , 2006, 2006, 4651-4.		12
30	Excitatory/Inhibitory Responses Shape Coherent Neuronal Dynamics Driven by Optogenetic Stimulation in the Primate Brain. Journal of Neuroscience, 2020, 40, 2056-2068.	1.7	12
31	Reducing false discoveries in resting-state functional connectivity using short channel correction: an fNIRS study. Neurophotonics, 2022, 9, 015001.	1.7	12
32	The Design and Testing of an Epi-Retinal Vision Prosthesis Neurostimulator Capable of Concurrent Parallel Stimulation. , 2006, 2006, 4700-9.		10
33	Cortical auditory evoked potential time-frequency growth functions for fully objective hearing threshold estimation. Hearing Research, 2018, 370, 74-83.	0.9	10
34	Implant electronics for intraocular epiretinal neuro-stimulators. , 2008, , .		9
35	Spatially dynamic recurrent information flow across longâ€range dorsal motor network encodes selective motor goals. Human Brain Mapping, 2018, 39, 2635-2650.	1.9	9
36	State-of-the-Art Wearable Sensors and Possibilities for Radar in Fall Prevention. Sensors, 2021, 21, 6836.	2.1	9

#	Article	IF	CITATIONS
37	Feasibility of Nitrogen Doped Ultrananocrystalline Diamond Microelectrodes for Electrophysiological Recording From Neural Tissue. Frontiers in Bioengineering and Biotechnology, 2018, 6, 85.	2.0	8
38	Neurophysiological considerations for visual implants. Brain Structure and Function, 2022, 227, 1523-1543.	1.2	8
39	Efficacy of supra-choroidal, bipolar, electrical stimulation in a vision prosthesis. , 2008, 2008, 1789-92.		7
40	Fully objective hearing threshold estimation in cochlear implant users using phase-locking value growth functions. Hearing Research, 2019, 377, 24-33.	0.9	7
41	An FPGA-Based Vision Prosthesis Prototype: Implementing an Efficient Multiplexing Method for Addressing Electrodes. , 2005, 2005, 5268-71.		6
42	Neural Stimulation with an Endovascular Brain-Machine Interface. , 2019, , .		6
43	Intracortical current steering shifts the location of evoked neural activity. Journal of Neural Engineering, 2022, 19, 035003.	1.8	6
44	Microelectronic Retinal Prosthesis: I. A Neurostimulator for the Concurrent Activation of Multiple Electrodes. , 2006, 2006, 4647-50.		4
45	Optical Imaging of Electrically Evoked Visual Signals in Cats: II. ICA "Harmonic Filtering" Noise Reduction. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 3380-3.	0.5	4
46	Multiscale decoding for reliable brain-machine interface performance over time. , 2017, 2017, 197-200.		4
47	Feasibility of identifying the ideal locations for motor intention decoding using unimodal and multimodal classification at 7T-fMRI. Scientific Reports, 2018, 8, 15556.	1.6	4
48	Evaluation of a minimally invasive endovascular neural interface for decoding motor activity. , 2019, ,		4
49	Wide dipole antennas for wireless powering of miniaturised bioelectronic devices. Sensing and Bio-Sensing Research, 2020, 27, 100311.	2.2	4
50	Distinct Neural Correlates Underlie Inhibitory Mechanisms of Motor Inhibition and Motor Imagery Restraint. Frontiers in Behavioral Neuroscience, 2020, 14, 77.	1.0	4
51	Optical Imaging of Electrically Evoked Visual Signals in Cats: I. Responses to Corneal and Intravitreal Electrical Stimulation. , 2007, 2007, 1635-8.		3
52	Decoding arm and hand movements across layers of the macaque frontal cortices. , 2012, 2012, 1757-60.		3
53	Local field potential phase modulates neural responses to intracortical electrical stimulation. , 2020, 2020, 3521-3524.		3
54	Suitability of nitinol electrodes in neural prostheses such as endovascular neural interfaces. , 2016, 2016, 4463-4466.		2

#	Article	IF	CITATIONS
55	A Model for Assessing the Electromagnetic Safety of an Inductively Coupled, Modular Brain-Machine Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1267-1276.	2.7	2
56	Optimizing recording depth to decode movement goals from cortical field potentials. , 2011, , .		1
57	Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface. , 2012, 2012, 4567-70.		1
58	Obstacle detection with MIMO 60 GHz radar for fall prevention. , 2019, , .		1
59	Spectral features of cortical auditory evoked potentials inform hearing threshold and intensity percepts in acoustic and electric hearing. Journal of Neural Engineering, 2021, 18, 046078.	1.8	1
60	Neuron-specific responses to acetylcholine within the spinal dorsal horn circuits of rodent and primate. Neuropharmacology, 2021, 198, 108755.	2.0	1
61	Visual-Motor Integration in the Primate Brain. , 2020, , 532-548.		1
62	Filling in the Visual Gaps: Shifting Cortical Activity using Current Steering. , 2021, 2021, 5733-5736.		1
63	The tracking of reaches in three-dimensions. , 2011, 2011, 5440-3.		Ο
64	Towards more efficient objective tests of hearing thresholds: Phase based detection of cortical auditory responses. , 2017, , .		0
65	Decoding Field Potentials. , 2014, , 1-4.		Ο
66	Decoding Field Potentials. , 2015, , 965-968.		0
67	Decoding Field Potentials. , 2022, , 1158-1160.		0