
Xiang Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4923880/publications.pdf Version: 2024-02-01

XIANC YANG LILL

#	Article	IF	CITATIONS
1	Reconstructed silk fibroin mediated smart wristband for physiological signal detection. Chemical Engineering Journal, 2022, 428, 132362.	6.6	14
2	Highly flexible and high energy density fiber supercapacitors based upon spiral silk composite membranes encapsulation. Electrochimica Acta, 2022, 404, 139611.	2.6	5
3	From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Advanced Science, 2022, 9, e2103981.	5.6	40
4	Recent Progress of Applying Mesoscopic Functionalization Engineering Principles to Spin Advanced Regenerated Silk Fibroin Fibers. Advanced Fiber Materials, 2022, 4, 390-403.	7.9	15
5	Enzymatic Crosslinked Silk Fibroin Hydrogel for Biodegradable Electronic Skin and Pulse Waveform Measurements. Biomacromolecules, 2022, 23, 3429-3438.	2.6	3
6	All-in-one fibrous capacitive humidity sensor for human breath monitoring. Textile Reseach Journal, 2021, 91, 398-405.	1.1	16
7	Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 583, 722-733.	5.0	49
8	Stretchable Supercapacitors: From Materials and Structures to Devices. Small Methods, 2021, 5, e2000853.	4.6	30
9	Enhanced mechanical performance of biocompatible silk fibroin films through mesoscopic construction of hierarchical structures. Textile Reseach Journal, 2021, 91, 1146-1154.	1.1	3
10	Coupling of Silk Fibroin Nanofibrils Enzymatic Membrane with Ultraâ€Thin PtNPs/Graphene Film to Acquire Long and Stable Onâ€5kin Sweat Glucose and Lactate Sensing. Small Methods, 2021, 5, e2000926.	4.6	28
11	Silk Nanococoons: Bioâ€Nanoreactors for Enzymatic Catalytic Reactions and Applications to Alcohol Intoxication. Small Science, 2021, 1, 2000049.	5.8	11
12	Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. Small Methods, 2021, 5, e2001060.	4.6	29
13	A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @ carbon composite for human respiration detection. Nanotechnology, 2021, 32, 19LT01.	1.3	12
14	Mesoâ€Reconstruction of Silk Fibroin based on Molecular and Nanoâ€Templates for Electronic Skin in Medical Applications. Advanced Functional Materials, 2021, 31, 2100150.	7.8	42
15	Biomimetic Salinity Power Generation Based on Silk Fibroin Ion-Exchange Membranes. ACS Nano, 2021, 15, 5649-5660.	7.3	36
16	New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Mesoâ€Electronics/Photonics Based on Cocoon Silk Materials. Advanced Materials, 2021, 33, e2005910.	11.1	45
17	Wearable hydration and pH sensor based on protein film for healthcare monitoring. Chemical Papers, 2021, 75, 4927.	1.0	10
18	Acid and Alkaliâ€Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid Energy Harvesting and Selfâ€Powered Monitoring in Highâ€Risk Environments. Advanced Functional Materials, 2021, 31, 2102963.	7.8	63

#	Article	IF	CITATIONS
19	Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion Triggered Color/Transmittance Adjustment. ACS Nano, 2021, 15, 12429-12437.	7.3	42
20	Boost of the Bio-memristor Performance for Artificial Electronic Synapses by Surface Reconstruction. ACS Applied Materials & Interfaces, 2021, 13, 39641-39651.	4.0	23
21	Effect of Graphene on Ice Polymorph. Crystals, 2021, 11, 1134.	1.0	3
22	Subcutaneous Energy/Signal Transmission Based on Silk Fibroin Up-Conversion Photonic Amplification. ACS Nano, 2021, 15, 9559-9567.	7.3	12
23	Flexible and disposable gold nanoparticles-N-doped carbon-modified electrochemical sensor for simultaneous detection of dopamine and uric acid. Nanotechnology, 2021, 32, 065502.	1.3	15
24	High voltage output/energy density flexible asymmetric fiber supercapacitors based on a tree-like topology. Cell Reports Physical Science, 2021, 2, 100649.	2.8	2
25	Reinforcement of Silk Microneedle Patches for Accurate Transdermal Delivery. Biomacromolecules, 2021, 22, 5319-5326.	2.6	15
26	Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among Hierarchical Structures. Biomacromolecules, 2020, 21, 4169-4179.	2.6	14
27	A Machineâ€Fabricated 3D Honeycombâ€Structured Flameâ€Retardant Triboelectric Fabric for Fire Escape and Rescue. Advanced Materials, 2020, 32, e2003897.	11.1	136
28	Flexible and Insoluble Artificial Synapses Based on Chemical Crossâ€Linked Wool Keratin. Advanced Functional Materials, 2020, 30, 2002882.	7.8	42
29	Mesoâ€Reconstruction of Wool Keratin 3D "Molecular Springs―for Tunable Ultraâ€Sensitive and Highly Recovery Strain Sensors. Small, 2020, 16, e2000128.	5.2	33
30	From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring. Small, 2020, 16, e2000203.	5.2	48
31	Tailoring the Meso-Structure of Gold Nanoparticles in Keratin-Based Activated Carbon Toward High-Performance Flexible Sensor. Nano-Micro Letters, 2020, 12, 117.	14.4	20
32	Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. Journal of Materials Chemistry A, 2020, 8, 12665-12673.	5.2	68
33	Making Stretchable Hybrid Supercapacitors by Knitting Nonâ€Stretchable Metal Fibers. Advanced Functional Materials, 2020, 30, 2003153.	7.8	52
34	Stretchable and Heatâ€Resistant Proteinâ€Based Electronic Skin for Human Thermoregulation. Advanced Functional Materials, 2020, 30, 1910547.	7.8	104
35	Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy Harvesting and Signal Sensing. ACS Nano, 2020, 14, 4716-4726.	7.3	130
36	Constructing dual-readout logic operations based on the silk fibroin sol–gel transition. Journal of Materials Chemistry B, 2020, 8, 3005-3009.	2.9	1

#	Article	IF	CITATIONS
37	All-Textile Electronic Skin Enabled by Highly Elastic Spacer Fabric and Conductive Fibers. ACS Applied Materials & Interfaces, 2019, 11, 33336-33346.	4.0	81
38	An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosensors and Bioelectronics, 2019, 142, 111595.	5.3	20
39	Silk Flexible Electronics: From <i>Bombyx mori</i> Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators. Advanced Functional Materials, 2019, 29, 1904777.	7.8	71
40	Primary and Secondary Mesoscopic Hybrid Materials of Au Nanoparticles@Silk Fibroin and Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 30125-30136.	4.0	18
41	A Novel Facile and Green Synthesis Protocol to Prepare High Strength Regenerated Silk Fibroin/SiO2 Composite Fiber. Fibers and Polymers, 2019, 20, 2222-2226.	1.1	8
42	Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles. Small, 2019, 15, e1903948.	5.2	82
43	Fullâ€Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring. Advanced Functional Materials, 2019, 29, 1904549.	7.8	193
44	A Biodegradable and Stretchable Proteinâ€Based Sensor as Artificial Electronic Skin for Human Motion Detection. Small, 2019, 15, e1805084.	5.2	143
45	Pulsed electrochemical deposition of porous WO ₃ on silver networks for highly flexible electrochromic devices. Journal of Materials Chemistry C, 2019, 7, 1966-1973.	2.7	40
46	Transient bioelectrical devices inspired by a silkworm moth breaking out of its cocoon. RSC Advances, 2019, 9, 14254-14259.	1.7	6
47	Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature–Pressure Sensing. Small, 2019, 15, e1901558.	5.2	184
48	Using Wool Keratin as a Basic Resist Material to Fabricate Precise Protein Patterns. Advanced Materials, 2019, 31, e1900870.	11.1	54
49	Gel-Based Artificial Photonic Skin to Sense a Gentle Touch by Reflection. ACS Applied Materials & Interfaces, 2019, 11, 15195-15200.	4.0	15
50	Can the pathway of stepwise nucleation be predicted and controlled?. Physical Chemistry Chemical Physics, 2019, 21, 7398-7405.	1.3	6
51	Effective hydrogenation of g-C3N4 for enhanced photocatalytic performance revealed by molecular structure dynamics. Applied Catalysis B: Environmental, 2019, 250, 63-70.	10.8	47
52	A nanoneedle-based reactional wettability variation sensor array for on-site detection of metal ions with a smartphone. Journal of Colloid and Interface Science, 2019, 547, 330-338.	5.0	8
53	An integrated smart heating control system based on sandwich-structural textiles. Nanotechnology, 2019, 30, 325203.	1.3	33
54	Silk Fluorescence Collimator for Ultrasensitive Humidity Sensing and Lightâ€Harvesting in Semitransparent Dye‧ensitized Solar Cells. Small, 2019, 15, 1804171.	5.2	12

#	Article	IF	CITATIONS
55	Photoelectrochromic smart windows powered by flexible dye-sensitized solar cell using CuS mesh as counter electrode. Materials Letters, 2019, 244, 92-95.	1.3	15
56	Assembling Twoâ€Phase Enzymatic Cascade Pathways in Pickering Emulsion. ChemCatChem, 2019, 11, 1878-1883.	1.8	6
57	Highly flexible and scalable photo-rechargeable power unit based on symmetrical nanotube arrays. Nano Energy, 2018, 46, 168-175.	8.2	44
58	Seeded Mineralization Leads to Hierarchical CaCO ₃ Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir, 2018, 34, 2942-2951.	1.6	33
59	Supramolecular gels and mesoscopic structure. International Journal of Modern Physics B, 2018, 32, 1840015.	1.0	3
60	The role of unfolded protein response and ER-phagy in quantum dots-induced nephrotoxicity: an in vitro and in vivo study. Archives of Toxicology, 2018, 92, 1421-1434.	1.9	46
61	Facile Onâ€Site Detection Based on Reactional Wettability Variation. Advanced Materials Interfaces, 2018, 5, 1701326.	1.9	7
62	A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability. Nanoscale, 2018, 10, 6531-6538.	2.8	29
63	Memristor with Agâ€Clusterâ€Doped TiO ₂ Films as Artificial Synapse for Neuroinspired Computing. Advanced Functional Materials, 2018, 28, 1705320.	7.8	318
64	Colloids in the study of fundamental physics. International Journal of Modern Physics B, 2018, 32, 1840008.	1.0	0
65	Needleâ€Leafâ€Like Cu ₂ Mo ₆ S ₈ Films for Highly Efficient Visibleâ€Light Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700302.	1.2	6
66	Nanocombing Effect Leads to Nanowire-Based, in-Plane, Uniaxial Thin Films. ACS Nano, 2018, 12, 12701-12712.	7.3	12
67	Rational design of coralloid Co ₉ S ₈ –CuS hierarchical architectures for quantum dot-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11384-11391.	2.7	8
68	Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018, 6, 19584-19589.	5.2	22
69	Enhanced Exfoliation of Biocompatible MoS ₂ Nanosheets by Wool Keratin. ACS Applied Nano Materials, 2018, 1, 5460-5469.	2.4	22
70	Chemical Decoration of Perovskites by Nickel Oxide Doping for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 36841-36850.	4.0	11
71	Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO ₃ Thin Films. Langmuir, 2018, 34, 11126-11138.	1.6	7
72	Data analysis between controllable variables and the performance of CuS crackle based electrode. Data in Brief, 2018, 17, 1331-1335.	0.5	1

#	Article	IF	CITATIONS
73	Ultraflexible, stretchable and fast-switching electrochromic devices with enhanced cycling stability. RSC Advances, 2018, 8, 18690-18697.	1.7	30
74	Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting. Nanotechnology, 2018, 29, 315203.	1.3	25
75	Remote activation of nanoparticulate biomimetic activity by light triggered pH-jump. Chemical Communications, 2018, 54, 8641-8644.	2.2	15
76	High-Throughput Screening of Rat Mesenchymal Stem Cell Behavior on Gradient TiO ₂ Nanotubes. ACS Biomaterials Science and Engineering, 2018, 4, 2804-2814.	2.6	30
77	An efficient and simple dual effect by under-layer abduction design for highly flexible NiOx-based perovskite solar cells. Journal of Power Sources, 2018, 399, 246-253.	4.0	15
78	Correlations of crystal shape and lateral orientation in bioinspired CaCO ₃ mineralization. CrystEngComm, 2018, 20, 5241-5248.	1.3	5
79	A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application. ACS Nano, 2018, 12, 5888-5894.	7.3	177
80	Control of ice nucleation: freezing and antifreeze strategies. Chemical Society Reviews, 2018, 47, 7116-7139.	18.7	215
81	Achieving High-Performance Surface-Enhanced Raman Scattering through One-Step Thermal Treatment of Bulk MoS ₂ . Journal of Physical Chemistry C, 2018, 122, 14467-14473.	1.5	25
82	Aqueous supercapacitors based on carbonized silk electrodes. RSC Advances, 2018, 8, 22146-22153.	1.7	19
83	Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells. Nanoscale, 2017, 9, 3826-3833.	2.8	33
84	Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Composites Science and Technology, 2017, 142, 286-293.	3.8	56
85	Highly Ordered and Multiple-Responsive Graphene Oxide/Azoimidazolium Surfactant Intercalation Hybrids: A Versatile Control Platform. Langmuir, 2017, 33, 3099-3111.	1.6	8
86	Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustainable Energy and Fuels, 2017, 1, 1217-1231.	2.5	103
87	Mesoâ€Functionalization of Silk Fibroin by Upconversion Fluorescence and Near Infrared In Vivo Biosensing. Advanced Functional Materials, 2017, 27, 1700628.	7.8	48
88	Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Advances, 2017, 7, 21740-21748.	1.7	16
89	Sputtered seed-assisted growth of CuS nanosheet arrays as effective counter electrodes for quantum dot-sensitized solar cells. Materials Letters, 2017, 203, 73-76.	1.3	13
90	Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Applied Materials & Interfaces, 2017, 9, 22037-22041.	4.0	29

#	Article	IF	CITATIONS
91	Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals. ACS Applied Materials & Interfaces, 2017, 9, 11770-11779.	4.0	19
92	Design of Heterogeneous Nuclei Composed of Uniaxial Cellulose Nanocrystal Assemblies for Epitaxial Growth of Poly(ε-caprolactone). Macromolecules, 2017, 50, 3355-3364.	2.2	10
93	Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment. Industrial & Engineering Chemistry Research, 2017, 56, 513-523.	1.8	63
94	Protein-Directed Synthesis of Bifunctional Adsorbent-Catalytic Hemin-Graphene Nanosheets for Highly Efficient Removal of Dye Pollutants via Synergistic Adsorption and Degradation. ACS Applied Materials & Interfaces, 2017, 9, 684-692.	4.0	69
95	Comparative Study of Strainâ€Đependent Structural Changes of Silkworm Silks: Insight into the Structural Origin of Strainâ€Stiffening. Small, 2017, 13, 1702266.	5.2	53
96	Mesoscopicâ€Functionalization of Silk Fibroin with Gold Nanoclusters Mediated by Keratin and Bioinspired Silk Synapse. Small, 2017, 13, 1702390.	5.2	76
97	Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002.	1.3	129
98	Transparent conducting oxide- and Pt-free flexible photo-rechargeable electric energy storage systems. RSC Advances, 2017, 7, 52988-52994.	1.7	23
99	Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films. Nature Communications, 2017, 8, 1398.	5.8	61
100	Smart electrochromic supercapacitors based on highly stable transparent conductive graphene/CuS network electrodes. RSC Advances, 2017, 7, 29088-29095.	1.7	35
101	Preparation of Crack-free Inverse-opal Films by Template/Matrix Co-assembly. Acta Chimica Sinica, 2017, 75, 1010.	0.5	0
102	"Nanoâ€Fishnet―Structure Making Silk Fibers Tougher. Advanced Functional Materials, 2016, 26, 5534-5541.	7.8	74
103	Advances in Soft Functional Materials Research. Advanced Functional Materials, 2016, 26, 8807-8809.	7.8	2
104	Enzymatic manipulation of a DNA-mediated ensemble for sensitive fluorescence detection of glucose. RSC Advances, 2016, 6, 33132-33137.	1.7	2
105	Crosslinked waterborne polyurethane with high waterproof performance. Polymer Chemistry, 2016, 7, 3913-3922.	1.9	81
106	3D nano-macroporous structured TiO ₂ -foam glass as an efficient photocatalyst for organic pollutant treatment. RSC Advances, 2016, 6, 51888-51893.	1.7	11
107	Fabrication of a uniaxial cellulose nanocrystal thin film for coassembly of single-walled carbon nanotubes. RSC Advances, 2016, 6, 39396-39400.	1.7	9
108	Graphical analysis of mammalian cell adhesion in vitro. Colloids and Surfaces B: Biointerfaces, 2016, 148, 211-219.	2.5	3

#	Article	IF	CITATIONS
109	Functionalization of Silk Fibroin Materials at Mesoscale. Advanced Functional Materials, 2016, 26, 8885-8902.	7.8	70
110	Programing Performance of Silk Fibroin Materials by Controlled Nucleation. Advanced Functional Materials, 2016, 26, 8978-8990.	7.8	64
111	Recent Development of Transparent Conducting Oxideâ€Free Flexible Thinâ€Film Solar Cells. Advanced Functional Materials, 2016, 26, 8855-8884.	7.8	82
112	Programing Performance of Wool Keratin and Silk Fibroin Composite Materials by Mesoscopic Molecular Network Reconstruction. Advanced Functional Materials, 2016, 26, 9032-9043.	7.8	75
113	Design of Heterogeneous Nuclei for Lateral Crystallization via Uniaxial Assembly of Cellulose Nanocrystals. Crystal Growth and Design, 2016, 16, 4620-4626.	1.4	9
114	Elevating Biomedical Performance of ZnO/SiO ₂ @Amorphous Calcium Phosphate ― Bioinspiration Making Possible the Impossible. Advanced Functional Materials, 2016, 26, 6921-6929.	7.8	13
115	Ligand-triggered electrostatic self-assembly of CdS nanosheet/Au nanocrystal nanocomposites for versatile photocatalytic redox applications. Nanoscale, 2016, 8, 19161-19173.	2.8	24
116	Properties and applications of designable and photo/redox dual responsive surfactants with the new head group 2-arylazo-imidazolium. RSC Advances, 2016, 6, 51552-51561.	1.7	9
117	The textural properties and microstructure of konjac glucomannan – tungsten gels induced by DC electric fields. Food Chemistry, 2016, 212, 256-263.	4.2	24
118	Direct Growth of Microspheres on Amorphous Precursor Domains in Polymer-Controlled Crystallization of Indomethacin. Crystal Growth and Design, 2016, 16, 1428-1434.	1.4	14
119	Using Inorganic Nanomaterials to Endow Biocatalytic Systems with Unique Features. Trends in Biotechnology, 2016, 34, 303-315.	4.9	18
120	Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels. Carbohydrate Polymers, 2016, 142, 293-299.	5.1	30
121	Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). Water Research, 2016, 91, 104-114.	5.3	99
122	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	5.2	137
123	From Amorphous Macroporous Film to 3D Crystalline Nanorod Architecture: A New Approach to Obtain Highâ€Performance V ₂ O ₅ Electrochromism. Advanced Materials Interfaces, 2015, 2, 1500230.	1.9	38
124	Soft Matter: From Structure to Functionality. Small, 2015, 11, 1022-1023.	5.2	0
125	Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Research, 2015, 8, 82-96.	5.8	84
126	Drug Permeation through Skin Is Inversely Correlated with Carrier Gel Rigidity. Molecular Pharmaceutics, 2015, 12, 444-452.	2.3	19

#	Article	IF	CITATIONS
127	Crystal Networks in Silk Fibrous Materials: From Hierarchical Structure to Ultra Performance. Small, 2015, 11, 1039-1054.	5.2	142
128	Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chemical Society Reviews, 2015, 44, 7881-7915.	18.7	83
129	Electrochromic performance of WO ₃ films: optimization by crystal network topology modification. CrystEngComm, 2015, 17, 6583-6590.	1.3	10
130	In situ growth of CuS and Cu _{1.8} S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 9595-9600.	5.2	132
131	Crystal networks in supramolecular gels: formation kinetics and mesoscopic engineering principles. CrystEngComm, 2015, 17, 7986-8010.	1.3	35
132	Structural engineering of waterborne polyurethane for high performance waterproof coatings. RSC Advances, 2015, 5, 72544-72552.	1.7	47
133	Bandgapâ€Opened Bilayer Graphene Approached by Asymmetrical Intercalation of Trilayer Graphene. Small, 2015, 11, 1177-1182.	5.2	21
134	Engineering of Fluorescent Emission of Silk Fibroin Composite Materials by Material Assembly. Small, 2015, 11, 1205-1214.	5.2	47
135	Controlled Colloidal Assembly. , 2015, , 561-594.		2
136	Construction of Whiteâ€Lightâ€Emitting Silk Protein Hybrid Films by Molecular Recognized Assembly among Hierarchical Structures. Advanced Functional Materials, 2014, 24, 5284-5290.	7.8	58
137	What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter, 2014, 10, 2116-2123.	1.2	127
138	Two-photon fluorescent Bombyx mori silk by molecular recognition functionalization. Journal of Materials Chemistry B, 2014, 2, 2136-2143.	2.9	27
139	Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly. Chemical Society Reviews, 2014, 43, 2324-2347.	18.7	48
140	Novel forward osmosis process to effectively remove heavy metal ions. Journal of Membrane Science, 2014, 467, 188-194.	4.1	192
141	A generic and effective strategy for highly effective "intrinsic―molecular luminescence in the condensed state. Journal of Materials Chemistry C, 2013, 1, 5277.	2.7	7
142	Quinoline-based azo derivative assembly: Optical limiting property and enhancement mechanism. Dyes and Pigments, 2013, 99, 720-726.	2.0	33
143	Design and Fabrication of a New Class of Nano Hybrid Materials based on Reactive Polymeric Molecular Cages. Langmuir, 2013, 29, 11498-11505.	1.6	25
144	From kinetic–structure analysis to engineering crystalline fiber networks in soft materials. Physical Chemistry Chemical Physics, 2013, 15, 3313.	1.3	22

#	Article	IF	CITATIONS
145	Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures. Chemical Communications, 2013, 49, 1431.	2.2	33
146	Control of crystallization in supramolecular soft materials engineering. Soft Matter, 2013, 9, 435-442.	1.2	22
147	Multiple Structural Coloring of Silkâ€Fibroin Photonic Crystals and Humidityâ€Responsive Color Sensing. Advanced Functional Materials, 2013, 23, 5373-5380.	7.8	196
148	Supramolecular self-assembly structures and properties of zwitterionic squaraine molecules. RSC Advances, 2013, 3, 8021.	1.7	31
149	Highly efficient and stable solid-state luminescent nanohybrids: Precise architecture and enhancement mechanism. Journal of Materials Research, 2013, 28, 1061-1069.	1.2	4
150	Engineered Large Spider Eggcase Silk Protein for Strong Artificial Fibers. Advanced Materials, 2013, 25, 1216-1220.	11.1	71
151	CHAPTER 13. Spider Silk: The Toughest Natural Polymer. RSC Green Chemistry, 2012, , 275-304.	0.0	3
152	Size invariance of fibrous networks of supramolecular soft materials during formation under critical volume confinement. Soft Matter, 2012, 8, 5187.	1.2	19
153	Survival from the Cold Winter: Freezing and Ice Crystallization Inhibition by Antifreeze Proteins. Biological and Medical Physics Series, 2012, , 57-105.	0.3	0
154	Controlled Colloidal Assembly: Experimental Modeling of General Crystallization and Biomimicking of Structural Color. Advanced Functional Materials, 2012, 22, 1354-1375.	7.8	41
155	Switching on Fluorescent Emission by Molecular Recognition and Aggregation Dissociation. Advanced Functional Materials, 2012, 22, 361-368.	7.8	42
156	A Convenient Organic–Inorganic Hybrid Approach Toward Highly Stable Squaraine Dyes with Reduced Hâ€Aggregation. Advanced Functional Materials, 2012, 22, 345-352.	7.8	73
157	Modeling of Biomineralization and Structural Color Biomimetics by Controlled Colloidal Assembly. Biological and Medical Physics Series, 2012, , 221-274.	0.3	2
158	Critical behavior of confined supramolecular soft materials on a microscopic scale. Chemical Communications, 2011, 47, 2793.	2.2	18
159	An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions. Analyst, The, 2011, 136, 1916.	1.7	63
160	Volume confinement induced microstructural transitions and property enhancements of supramolecular soft materials. Soft Matter, 2011, 7, 1708-1713.	1.2	17
161	Kinetically Controlled Homogenization and Transformation of Crystalline Fiber Networks in Supramolecular Materials. Crystal Growth and Design, 2011, 11, 3227-3234.	1.4	22
162	Controlling Nanoparticle Formation via Sizable Cages of Supramolecular Soft Materials. Langmuir, 2011, 27, 7820-7827.	1.6	18

#	Article	IF	CITATIONS
163	Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO ₂ Nanostructured Film. Langmuir, 2011, 27, 3224-3228.	1.6	62
164	Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies. Optics Express, 2011, 19, 9232.	1.7	27
165	The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model. Biomaterials, 2011, 32, 9576-9583.	5.7	54
166	Structural Origin of the Strainâ€Hardening of Spider Silk. Advanced Functional Materials, 2011, 21, 772-778.	7.8	229
167	Intrinsically Colored and Luminescent Silk. Advanced Materials, 2011, 23, 1463-1466.	11.1	133
168	Architecture of Supramolecular Soft Functional Materials: From Understanding to Microâ€ / Nanoscale Engineering. Advanced Functional Materials, 2010, 20, 3196-3216.	7.8	154
169	A DFT study on poly(lactic acid) polymorphs. Polymer, 2010, 51, 2779-2785.	1.8	54
170	Simulating "Atomic―Processes of Crystallization via Controlled Colloidal Assembly. , 2010, , .		1
171	Ab Initio Elasticity of Poly(lactic acid) Crystals. Journal of Physical Chemistry B, 2010, 114, 3133-3139.	1.2	28
172	Microengineering of Supramolecular Soft Materials by Design of the Crystalline Fiber Networks. Crystal Growth and Design, 2010, 10, 2699-2706.	1.4	47
173	Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. Chemical Communications, 2010, 46, 7415.	2.2	99
174	Producing Supramolecular Functional Materials Based on Fiber Network Reconstruction. Advanced Functional Materials, 2009, 19, 2252-2259.	7.8	41
175	Nucleation: What Happens at the Initial Stage?. Angewandte Chemie - International Edition, 2009, 48, 1308-1312.	7.2	107
176	Spherulitic Networks: From Structure to Rheological Property. Journal of Physical Chemistry B, 2009, 113, 4549-4554.	1.2	23
177	Controllable Epitaxial Crystallization and Reversible Oriented Patterning of Two-Dimensional Colloidal Crystals. Journal of the American Chemical Society, 2009, 131, 4976-4982.	6.6	41
178	Determination of Elastic Constants of Two-Dimensional Close-Packed Colloidal Crystals. Langmuir, 2009, 25, 5432-5436.	1.6	13
179	Microengineering of Soft Functional Materials by Controlling the Fiber Network Formation. Journal of Physical Chemistry B, 2009, 113, 15467-15472.	1.2	39
180	Engineering Molecular Self-Assembled Fibrillar Networks by Ultrasound. Crystal Growth and Design, 2009, 9, 3286-3291.	1.4	48

#	Article	IF	CITATIONS
181	Nanoengineering of a Biocompatible Organogel by Thermal Processing. Journal of Physical Chemistry B, 2009, 113, 5011-5015.	1.2	65
182	In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 2009, 274, 319-326.	3.2	235
183	Controlled formation of colloidal structures by an alternating electric field and its mechanisms. Journal of Chemical Physics, 2009, 130, 184901.	1.2	32
184	Will Fluoride Toughen or Weaken Our Teeth? Understandings Based on Nucleation, Morphology, and Structural Assembly. Journal of Physical Chemistry B, 2009, 113, 16393-16399.	1.2	30
185	Electrically Directed Onâ€Chip Reversible Patterning of Twoâ€Dimensional Tunable Colloidal Structures. Advanced Functional Materials, 2008, 18, 802-809.	7.8	40
186	Physicochemical effects of terpenes on organogel for transdermal drug delivery. International Journal of Pharmaceutics, 2008, 358, 102-107.	2.6	33
187	Enhanced Antifreeze Effect of Antifreeze Protein on Ice Nucleation by Electrolyte. Crystal Growth and Design, 2008, 8, 3290-3294.	1.4	7
188	Fabrication and Biofunctionalization of Selenium-Polypyrrole Core–Shell Nanoparticles for Targeting and Imaging of Cancer Cells. Journal of Nanoscience and Nanotechnology, 2008, 8, 2488-2491.	0.9	9
189	Size-dependent planar colloidal crystals guided by alternating electric field. Applied Physics Letters, 2007, 90, 111911.	1.5	14
190	From Templated Nucleation to Functional Materials Engineering. AIP Conference Proceedings, 2007, , .	0.3	3
191	How Does a Transient Amorphous Precursor Template Crystallization. Journal of the American Chemical Society, 2007, 129, 13520-13526.	6.6	171
192	Multistep Crystal Nucleation:  A Kinetic Study Based on Colloidal Crystallization. Journal of Physical Chemistry B, 2007, 111, 14001-14005.	1.2	61
193	Effect of Long-Range Attraction on Growth Model. Journal of Physical Chemistry C, 2007, 111, 1342-1346.	1.5	16
194	Architecture of Macromolecular Network of Soft Functional Materials:Â from Structure to Function. Journal of Physical Chemistry B, 2007, 111, 5558-5563.	1.2	39
195	Kinetics and Equilibrium Distribution of Colloidal Assembly under an Alternating Electric Field and Correlation to Degree of Perfection of Colloidal Crystals. Journal of Physical Chemistry C, 2007, 111, 995-998.	1.5	16
196	Design of Superior Spider Silk: From Nanostructure to Mechanical Properties. Biophysical Journal, 2006, 91, 4528-4535.	0.2	305
197	Real-Time Observation of Fiber Network Formation in Molecular Organogel:Â Supersaturation-Dependent Microstructure and Its Related Rheological Property. Journal of Physical Chemistry B, 2006, 110, 7275-7280.	1.2	152
198	Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. International Journal of Pharmaceutics, 2006, 311, 157-164.	2.6	97

#	Article	IF	CITATIONS
199	Two Scenarios for Colloidal Phase Transitions. Physical Review Letters, 2006, 96, 105701.	2.9	30
200	Configurations and diffusion of point defects in two-dimensional colloidal crystals. Applied Physics Letters, 2006, 89, 261914.	1.5	16
201	lce Surface Reconstruction as Antifreeze Protein-Induced Morphological Modification Mechanism. Journal of the American Chemical Society, 2005, 127, 428-440.	6.6	17
202	Zero-sized Effect of Nano-particles and Inverse Homogeneous Nucleation. Journal of Biological Chemistry, 2004, 279, 6124-6131.	1.6	45
203	From solid–fluid interfacial structure to nucleation kinetics: Principles and strategies for micro/nanostructure engineering. Nanostructure Science and Technology, 2004, , 109-175.	0.1	8
204	Creating New Supramolecular Materials by Architecture of Three-Dimensional Nanocrystal Fiber Networks. Journal of the American Chemical Society, 2002, 124, 15055-15063.	6.6	103
205	Effect of microgravity on Ca mineral crystallization and implications for osteoporosis in space. Applied Physics Letters, 2001, 79, 3539-3541.	1.5	19
206	Morphology of orthorhombic long chain normal alkanes: theory and observations. Journal of Crystal Growth, 1992, 121, 679-696.	0.7	77
207	Bring Structural Color to Silk Fabrics. Advanced Materials Research, 0, 441, 183-186.	0.3	10