Antonio D Del Campo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4923328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling time-lapse ground penetrating radar surveys and infiltration experiments to characterize two types of non-uniform flow. Science of the Total Environment, 2022, 806, 150410.	8.0	7
2	Limited contribution of post-fire eco-engineering techniques to support post-fire plant diversity. Science of the Total Environment, 2022, 815, 152894.	8.0	6
3	On the Need to Further Refine Stock Quality Specifications to Improve Reforestation under Climatic Extremes. Forests, 2022, 13, 168.	2.1	3
4	Effects of Thinning Intensity on Forest Floor and Soil Biochemical Properties in an Aleppo Pine Plantation after 13 Years: Quantity but Also Quality Matters. Forests, 2022, 13, 255.	2.1	2
5	Long-Term Carbon Sequestration in Pine Forests under Different Silvicultural and Climatic Regimes in Spain. Forests, 2022, 13, 450.	2.1	4
6	A global synthesis on the effects of thinning on hydrological processes: Implications for forest management. Forest Ecology and Management, 2022, 519, 120324.	3.2	29
7	Ecohydrological turnover in overstocked Aleppo pine plantations: Does the effect of thinning, in relation to water, persist at the mid-term?. Forest Ecology and Management, 2021, 483, 118781.	3.2	9
8	Thinning decreased soil respiration differently in two dryland Mediterranean forests with contrasted soil temperature and humidity regimes. European Journal of Forest Research, 2021, 140, 1469-1485.	2.5	6
9	Assessing reforestation failure at the project scale: The margin for technical improvement under harsh conditions. A case study in a Mediterranean Dryland. Science of the Total Environment, 2021, 796, 148952.	8.0	8
10	Water-Based Forest Management of Mediterranean Pine Forests. Managing Forest Ecosystems, 2021, , 727-746.	0.9	2
11	SilvAdapt.Net: A Site-Based Network of Adaptive Forest Management Related to Climate Change in Spain. Forests, 2021, 12, 1807.	2.1	4
12	Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil and Tillage Research, 2020, 197, 104495.	5.6	19
13	Comparison of Soil Water Estimates From Cosmic-Ray Neutron and Capacity Sensors in a Semi-arid Pine Forest: Which Is Able to Better Assess the Role of Environmental Conditions and Thinning?. Frontiers in Water, 2020, 2, .	2.3	0
14	Responses of forest carbon and water coupling to thinning treatments from leaf to stand scales in a young montane pine forest. Carbon Balance and Management, 2020, 15, 24.	3.2	7
15	Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest. Forest Ecology and Management, 2020, 464, 118088.	3.2	27
16	Improving the modelling and understanding of carbon-nitrogen-water interactions in a semiarid Mediterranean oak forest. Ecological Modelling, 2020, 420, 108976.	2.5	1
17	Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection. Forest Ecology and Management, 2020, 467, 118156.	3.2	12
18	Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain. Science of the Total Environment, 2020, 728, 138536.	8.0	66

#	Article	IF	CITATIONS
19	Juvenile thinning can effectively mitigate the effects of drought on tree growth and water consumption in a young Pinus contorta stand in the interior of British Columbia, Canada. Forest Ecology and Management, 2019, 454, 117667.	3.2	22
20	Explaining the hydrological behaviour of facultative phreatophytes using a multi-variable and multi-objective modelling approach. Journal of Hydrology, 2019, 575, 395-407.	5.4	11
21	Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff. Forest Ecology and Management, 2019, 438, 163-175.	3.2	40
22	The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 2019, 264, 266-282.	4.8	32
23	Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility. Journal of Environmental Management, 2019, 231, 653-665.	7.8	11
24	Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology, 2018, 18, 236.	3.6	43
25	Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks. Science of the Total Environment, 2018, 639, 725-741.	8.0	15
26	Water Balance of Mediterranean Quercus ilex L. and Pinus halepensis Mill. Forests in Semiarid Climates: A Review in A Climate Change Context. Forests, 2018, 9, 426.	2.1	17
27	Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology, 2018, 565, 74-86.	5.4	33
28	Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. Journal of Hydrology and Hydromechanics, 2017, 65, 276-286.	2.0	31
29	Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 2017, 8, 1202.	3.6	38
30	Ecohydrological-Based Forest Management in Semi-arid Climate. , 2017, , 45-57.		5
31	A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research, 2016, 52, 8277-8294.	4.2	24
32	Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. Forest Ecology and Management, 2016, 361, 298-308.	3.2	51
33	Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?. Ecological Modelling, 2016, 324, 45-53.	2.5	27
34	Early establishment response of different Pinus nigra ssp. salzmanii seed sources on contrasting environments: Implications for future reforestation programs and assisted population migration. Journal of Environmental Management, 2016, 171, 184-194.	7.8	8
35	Coupling daily transpiration modelling with forest management in a semiarid pine plantation. IForest, 2016, 9, 38-48.	1.4	12
36	Light Detection and Ranging for Implementing Waterâ€Oriented Forest Management in a Semiarid Sub atchment (Valencia, Spain). Clean - Soil, Air, Water, 2015, 43, 1488-1494.	1.1	4

ANTONIO D DEL CAMPO

#	Article	IF	CITATIONS
37	Development of a Keetch and Byram—Based drought index sensitive to forest management in Mediterranean conditions. Agricultural and Forest Meteorology, 2015, 205, 40-50.	4.8	26
38	Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation. Ecological Modelling, 2015, 308, 34-44.	2.5	19
39	The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecological Engineering, 2015, 84, 218-228.	3.6	23
40	Is tree shelter protection an effective complement to weed competition management in improving the morpho-physiological response of holm oak planted seedlings?. IForest, 2014, 7, 289-299.	1.4	10
41	On the importance of topography, site quality, stock quality and planting date in a semiarid plantation: Feasibility of using low-density LiDAR. Ecological Engineering, 2014, 67, 25-38.	3.6	12
42	Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management?. European Journal of Forest Research, 2014, 133, 879-894.	2.5	68
43	Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New Forests, 2014, 45, 603-624.	1.7	22
44	The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management, 2012, 269, 206-213.	3.2	129
45	Interactions between soil gravel content and neighboring vegetation control management in oak seedling establishment success in Mediterranean environments. Forest Ecology and Management, 2012, 271, 10-18.	3.2	30
46	Evaluación temprana de técnicas de restauración forestal mediante fluorescencia de la clorofila y diagnóstico de vitalidad de brinzales de encina (Quercus ilex sub. ballota). Bosque, 2012, 33, 17-18.	0.3	1
47	Nursery location and potassium enrichment in Aleppo pine stock 1. Effect on nursery culture, growth, allometry and seedling quality. Forestry, 2011, 84, 221-234.	2.3	5
48	Nursery location and potassium enrichment in Aleppo pine stock 2. Performance under real and hydrogel-mediated drought conditions. Forestry, 2011, 84, 235-245.	2.3	21
49	Leaf area index estimation in a pine plantation with LAI-2000 under direct sunlight conditions: relationship with inventory and hydrologic variables. Forest Systems, 2011, 20, 108.	0.3	8
50	Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus) Tj ETQq0 0 0 19-37.	rgBT /Ov 1.7	erlock 10 Tf 62
51	Adjustment of Forest Management Strategies to Changing Climate. Ecological Studies, 2010, , 313-329.	1.2	1
52	Legume living mulch for afforestation in agricultural land in Southern Spain. Soil and Tillage Research, 2009, 102, 38-44.	5.6	9
53	Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus) Tj ETQq1 1	0,784314 3.6	rgBT /Overle
54	Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery. Journal of Plant Physiology, 2009, 166, 233-245.	3.5	101

#	Article	IF	CITATIONS
55	Relationship between root growth potential and field performance in Aleppo pine. Annals of Forest Science, 2007, 64, 541-548.	2.0	12
56	Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Annals of Forest Science, 2007, 64, 719-731.	2.0	26
57	Effect of tree shelter design on water condensation and run-off and its potential benefit for reforestation establishment in semiarid climates. Forest Ecology and Management, 2006, 235, 107-115.	3.2	34
58	Nursery practices and field performance for the endangered Mediterranean species Abies pinsapo Boiss Ecological Engineering, 2006, 27, 93-99.	3.6	15
59	Establishment of Quercus ilex L. subsp. ballota [Desf.] Samp. using different weed control strategies in southern Spain. Ecological Engineering, 2005, 25, 332-342.	3.6	66