
Luca Sorrentino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4923005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diamond tool wear monitoring by sensory analysis in milling of absolute black granite. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236, 625-635.	2.4	2
2	Titanium lattice structures manufactured by EBM process: Effect of skin material on bending characteristics. Engineering Fracture Mechanics, 2022, 260, 108180.	4.3	12
3	Influence of Laser Treatment on End Notched Flexure Bonded Joints in Carbon Fiber Reinforced Polymer: Experimental and Numerical Results. Materials, 2022, 15, 910.	2.9	5
4	Drilling of glare laminates: effect of cutting parameters on process forces and temperatures. International Journal of Advanced Manufacturing Technology, 2022, 120, 645-657.	3.0	10
5	Experimental study and numerical modeling of ENF scheme: Comparison of different beam approaches. Engineering Fracture Mechanics, 2022, 262, 108230.	4.3	2
6	Ti-6Al-4V Octet-Truss Lattice Structures under Bending Load Conditions: Numerical and Experimental Results. Metals, 2022, 12, 410.	2.3	9
7	Hybrid structures in Titanium-Lattice/FRP: effect of skins material on bending characteristics. Procedia Structural Integrity, 2022, 41, 3-8.	0.8	1
8	Temperature analysis in fiber metal laminates drilling: Experimental and numerical results. Polymer Composites, 2022, 43, 7600-7615.	4.6	9
9	CFRP laser texturing to increase the adhesive bonding: morphological analysis of treated surfaces. Journal of Adhesion, 2021, 97, 1322-1335.	3.0	21
10	Neural Based Optimization of Composite Curing Process. , 2021, , 2-13.		1
11	Damage analysis of Ti6Al4V lattice structures manufactured by electron beam melting process subjected to bending load. Material Design and Processing Communications, 2021, 3, .	0.9	5
12	Bending properties of titanium lattice structures produced by electron beam melting process. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1961-1970.	3.4	17
13	Investigation on selective laser sintering of PA12: dimensional accuracy and mechanical performance. Rapid Prototyping Journal, 2021, 27, 1010-1019.	3.2	7
14	Numerical model development to predict the process-induced residual stresses in fibre metal laminates. Forces in Mechanics, 2021, 3, 100017.	2.8	3
15	Lightweight Structures: an innovative method to uniform the thickness of metal sheets by patchwork blanks. International Journal of Lightweight Materials and Manufacture, 2021, 5, 20-20.	2.1	1
16	Failure energy and stiffness of titanium lattice specimens produced by electron beam melting process. Material Design and Processing Communications, 2021, 3, .	0.9	8
17	Effect of operating temperature on aged single lap bonded joints. Defence Technology, 2020, 16, 283-289.	4.2	13
18	Laser treatment surface: An innovative method to increase the adhesive bonding of ENF joints in CFRP. Composite Structures, 2020, 233, 111638.	5.8	24

#	Article	IF	CITATIONS
19	Failure energy and strength of Al/CFRP hybrid laminates under flexural load. Material Design and Processing Communications, 2020, 2, e109.	0.9	2
20	Comparison between long and short beam flexure of a carbon fibre based FML. Procedia Structural Integrity, 2020, 26, 120-128.	0.8	7
21	Ti6Al4V Parts Produced by Electron Beam Melting: Analysis of Dimensional Accuracy and Surface Roughness. Journal of Advanced Manufacturing Systems, 2020, 19, 107-130.	1.0	18
22	Potentiality of hybrid structures in CFRP and additive manufactured metal octet-truss lattice. Procedia Structural Integrity, 2020, 28, 667-674.	0.8	11
23	Interlaminar shear strength study on CFRP/Al hybrid laminates with different properties. Frattura Ed Integrita Strutturale, 2020, 14, 442-448.	0.9	6
24	Uniformity of thickness of metal sheets by patchwork blanks: potential of adhesive bonding. Frattura Ed Integrita Strutturale, 2020, 14, 166-176.	0.9	4
25	Ductile cast irons: Microstructure influence on the fatigue initiation mechanisms. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2172-2182.	3.4	23
26	Analysis of CFRP/Al hybrid laminates flexural strength. Procedia Structural Integrity, 2019, 18, 368-372.	0.8	2
27	Forces and wear in high-speed machining of granite by circular sawing. Diamond and Related Materials, 2019, 100, 107579.	3.9	16
28	Hydrogen embrittlement in a 2101 lean Duplex Stainless Steel. Procedia Structural Integrity, 2019, 18, 391-398.	0.8	2
29	Influence of structural characteristics on the interlaminar shear strength of CFRP/Al fibre metal laminates. Procedia Structural Integrity, 2019, 18, 373-378.	0.8	11
30	Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics. Composite Structures, 2019, 225, 111117.	5.8	43
31	Robotic filament winding: An innovative technology to manufacture complex shape structural parts. Composite Structures, 2019, 220, 699-707.	5.8	39
32	Measurement of high flexibility components in composite material: critical issues and possible solutions. International Journal of Advanced Manufacturing Technology, 2019, 103, 1529-1542.	3.0	2
33	Flexural strength of aluminium carbon/epoxy fibre metal laminates. Material Design and Processing Communications, 2019, 1, e40.	0.9	4
34	Neural-fuzzy optimization of thick composites curing process. Materials and Manufacturing Processes, 2019, 34, 262-273.	4.7	31
35	Experimental analysis of aluminium/carbon epoxy hybrid laminates under flexural load. Frattura Ed Integrita Strutturale, 2019, 13, 739-747.	0.9	19
36	Friction influence on the AA6060 aluminium alloy formability. Frattura Ed Integrita Strutturale, 2019, 13, 791-799.	0.9	1

#	Article	IF	CITATIONS
37	A new method to reduce delaminations during drilling of FRP laminates by feed rate control. Composite Structures, 2018, 186, 154-164.	5.8	124
38	Experimental investigation of hydrothermal ageing on single lap bonded CFRP joints. Procedia Structural Integrity, 2018, 9, 101-107.	0.8	13
39	Mould design for manufacturing of isogrid structures in composite material. Procedia Structural Integrity, 2018, 9, 172-178.	0.8	6
40	Mechanical performances increasing of natural stones by GFRP sandwich structures. Procedia Structural Integrity, 2018, 9, 179-185.	0.8	5
41	Evaluation of the spring-in of CFRP thin laminates in dependence on process variation. Procedia CIRP, 2018, 75, 415-420.	1.9	3
42	7.16 Process Control for Polymeric Composite Manufacture. , 2018, , 337-354.		2
43	Investigation on Electron Beam Melting: Dimensional accuracy and process repeatability. Vacuum, 2018, 157, 340-348.	3.5	25
44	Geometrical deviation analysis of CFRP thin laminate assemblies: Numerical and experimental results. Composites Science and Technology, 2018, 168, 1-11.	7.8	29
45	Surface treatment of CFRP: influence on single lap joint performances. International Journal of Adhesion and Adhesives, 2018, 85, 225-233.	2.9	48
46	Analysis of spring-in in U-shaped composite laminates: Numerical and experimental results. AIP Conference Proceedings, 2018, , .	0.4	0
47	Analysis of cure induced deformation of CFRP U-shaped laminates. Composite Structures, 2018, 197, 1-9.	5.8	42
48	Forming Process Analysis of an AA6060 Aluminum Vessel. Frattura Ed Integrita Strutturale, 2018, 12, 164-172.	0.9	4
49	Influence of hydrothermal ageing on single lap bonded CFRP joints. Frattura Ed Integrita Strutturale, 2018, 12, 173-182.	0.9	14
50	Performance Index of Natural Stones-GFRP Hybrid Structures. Frattura Ed Integrita Strutturale, 2018, 12, 285-294.	0.9	2
51	Characterization of Isogrid Structure in GFRP. Frattura Ed Integrita Strutturale, 2018, 12, 319-331.	0.9	10
52	In process monitoring of cutting temperature during the drilling of FRP laminate. Composite Structures, 2017, 168, 549-561.	5.8	95
53	Analysis of carbon fibre reinforced polymers milling by diamond electroplated tool. Diamond and Related Materials, 2017, 76, 184-190.	3.9	14
54	Spring-in analysis of CFRP thin laminates: numerical and experimental results. Composite Structures, 2017, 173, 17-24.	5.8	55

#	Article	IF	CITATIONS
55	Manufacture of high performance isogrid structure by Robotic Filament Winding. Composite Structures, 2017, 164, 43-50.	5.8	54
56	A method to optimize the diamond wire cutting process. Diamond and Related Materials, 2017, 71, 90-97.	3.9	37
57	A new methodology to evaluate the influence of curing overheating on the mechanical properties of thick FRP laminates. Composites Part B: Engineering, 2017, 109, 187-196.	12.0	60
58	Analysis of Thermal Damage in FRP Drilling. Procedia Engineering, 2016, 167, 206-215.	1.2	28
59	Effect of curing overheating on interlaminar shear strength and its modelling in thick FRP laminates. International Journal of Advanced Manufacturing Technology, 2016, 87, 2213-2220.	3.0	48
60	Potentiality of Hot Drape Forming to produce complex shape parts in composite material. International Journal of Advanced Manufacturing Technology, 2016, 85, 945-954.	3.0	10
61	Hard and soft computing models of composite curing process looking toward monitoring and control. AIP Conference Proceedings, 2016, , .	0.4	8
62	In-process monitoring of cure degree by coplanar plate sensors. International Journal of Advanced Manufacturing Technology, 2016, 86, 2851-2859.	3.0	17
63	Design and manufacturing of an isogrid structure in composite material: Numerical and experimental results. Composite Structures, 2016, 143, 189-201.	5.8	48
64	Local monitoring of polymerization trend by an interdigital dielectric sensor. International Journal of Advanced Manufacturing Technology, 2015, 79, 1007-1016.	3.0	30
65	Performance index optimization of pressure vessels manufactured by filament winding technology. Advanced Composite Materials, 2015, 24, 269-285.	1.9	7
66	Validation of a Methodology for Cure Process Optimization of Thick Composite Laminates. Polymer-Plastics Technology and Engineering, 2015, 54, 1803-1811.	1.9	25
67	Compaction influence on spring-in of thin composite parts: Experimental and numerical results. Journal of Composite Materials, 2015, 49, 2149-2158.	2.4	36
68	Cutting Forces in Milling of Carbon Fibre Reinforced Plastics. International Journal of Manufacturing Engineering, 2014, 2014, 1-8.	0.8	13
69	Ballistic Performance Evaluation of Composite Laminates in Kevlar 29. Procedia Engineering, 2014, 88, 255-262.	1.2	43
70	To design the cure process of thick composite parts: experimental and numerical results. Advanced Composite Materials, 2014, 23, 225-238.	1.9	40
71	New methodology to determine the compressibility curve in a RIFT process. Journal of Composite Materials, 2014, 48, 1233-1240.	2.4	8
72	Mechanical performance analysis of hybrid metal-foam/composite samples. International Journal of Advanced Manufacturing Technology, 2012, 60, 181-190.	3.0	18

#	Article	IF	CITATIONS
73	A Method for Cure Process Design of Thick Composite Components Manufactured by Closed Die Technology. Applied Composite Materials, 2012, 19, 31-45.	2.5	32
74	Innovative Technologies to Manufacture Hybrid Metal Foamâ^•Composite Components. , 2011, , .		2
75	Innovative Tape Placement Robotic Cell: High Flexibility System to Manufacture Composite Structural Parts With Variable Thickness. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	2.2	2
76	Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminium alloy. International Journal of Adhesion and Adhesives, 2009, 29, 136-143.	2.9	29
77	2024 aluminium alloy wettability and superficial cleaning improvement by air cold plasma treatment. Journal of Materials Processing Technology, 2009, 209, 1400-1409.	6.3	29
78	Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules. Advanced Composite Materials, 2008, 17, 1-23.	1.9	7
79	Oxygen cold plasma treatment on polypropylene: Influence of process parameters on surface wettability. Surface Engineering, 2007, 23, 247-252.	2.2	13
80	Adhesion of a protective coating on a surface of aluminium alloy treated by air cold plasma. International Journal of Adhesion and Adhesives, 2007, 27, 1-8.	2.9	26
81	A neuro-fuzzy approach for increasing productivity in gas metal arc welding processes. International Journal of Advanced Manufacturing Technology, 2007, 32, 459-467.	3.0	12
82	AR Models to Forecast Roving Tension Trend in a Robotized Filament Winding Cell. Materials and Manufacturing Processes, 2006, 21, 870-876.	4.7	3
83	Wettability improving of 2024 aluminium alloy by oxygen cold plasma treatment. International Journal of Advanced Manufacturing Technology, 2006, 31, 465-473.	3.0	21
84	Actual Safety Distance and Winding Tension to Manufacture Full Section Parts by Robotized Filament Winding. Journal of Engineering Materials and Technology, Transactions of the ASME, 2006, 128, 393-400.	1.4	3
85	Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts. Composites Science and Technology, 2005, 65, 1574-1581.	7.8	33
86	Correlation of wettability and superficial cleaning of 2024 aluminium alloy with air cold plasma treatment time. International Journal of Advanced Manufacturing Technology, 2005, 26, 1026-1031.	3.0	12
87	Estimation of the winding tension to manufacture full section parts with robotized filament winding technology. Advanced Composite Materials, 2005, 14, 305-318.	1.9	7
88	Winding Trajectory and Winding Time in Robotized Filament Winding of Asymmetric Shape Parts. Journal of Composite Materials, 2005, 39, 1391-1411.	2.4	18
89	Analysis of adhesion in an aggressive environment of a protective paint coating on an aluminium alloy surface treated by air cold plasma. Journal of Adhesion Science and Technology, 2004, 18, 1643-1661.	2.6	8
90	Method to Evaluate Winding Trajectories in Robotized Filament Winding. Journal of Composite Materials, 2004, 38, 41-56.	2.4	11

#	Article	IF	CITATIONS
91	Ageing time of wettability on polypropylene surfaces processed by cold plasma. Journal of Materials Processing Technology, 2004, 153-154, 519-525.	6.3	42
92	Design of Deposition Head Trajectory for Robotized Filament Winding of Complex Shape Parts. , 2004, , 897.		1
93	Modular structure of a new feed-deposition head for a robotized filament winding cell. Composites Science and Technology, 2003, 63, 2255-2263.	7.8	22
94	Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment. Applied Surface Science, 2003, 214, 232-242.	6.1	51
95	Design of Winding With Two Rovings for Cost Efficiency and Quality in Robotized Filament Winding. , 2003, , 177.		1
96	Design of a New Feed-Deposition Head for Robotized Filament Winding. , 2002, , 31.		5
97	Adhesion of Polypropylene Surfaces Treated by Cold Plasma. , 2002, , .		3
98	Comparison of Winding Cells with One and Two Rovings in Robotized Filament Winding Technology. , 0, , .		0
99	Increasing of ENF Bonded Joints Performance by Design of Laser Surface Texturing. Key Engineering Materials, 0, 813, 346-351.	0.4	0
100	Performance index of isogrid structures: robotic filament winding carbon fiber reinforced polymer vs. titanium alloy. Materials and Manufacturing Processes, 0, , 1-9.	4.7	2