
Amélie Lubin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4922450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do children with mathematical learning disabilities use the inversion principle to solve three-term arithmetic problems?: The impact of presentation mode. Journal of Experimental Child Psychology, 2022, 216, 105343.	1.4	0
2	GRAMMATICAL ATTRACTION ERROR DETECTION IN CHILDREN AND ADOLESCENTS. Cognitive Development, 2017, 44, 127-138.	1.3	5
3	Expertise, inhibitory control and arithmetic word problems: A negative priming study in mathematics experts. Learning and Instruction, 2016, 45, 40-48.	3.2	23
4	Inhibitory control is needed to overcome written verb inflection errors: Evidence from a developmental negative priming study. Cognitive Development, 2016, 37, 18-27.	1.3	22
5	Executive Functions Differentially Contribute to Fourth Graders' Mathematics, Reading, and Spelling Skills. Journal of Cognitive Education and Psychology, 2016, 15, 444-463.	0.2	18
6	The Role of Self-Action in 2-Year-Old Children: An Illustration of the Arithmetical Inversion Principle before Formal Schooling. Child Development Research, 2015, 2015, 1-7.	1.9	1
7	Inhibition, conflict detection, and number conservation. ZDM - International Journal on Mathematics Education, 2015, 47, 793-800.	2.2	14
8	Anterior cingulate cortex and intuitive bias detection during number conservation. Cognitive Neuroscience, 2015, 6, 158-168.	1.4	23
9	Evidence for children's error sensitivity during arithmetic word problem solving. Learning and Instruction, 2015, 40, 1-8.	3.2	12
10	When I Met my brain: Participating in a neuroimaging study influences children's naÃ⁻ve mind–brain conceptions. Trends in Neuroscience and Education, 2015, 4, 92-97.	3.1	4
11	The Smart Nonconserver: Preschoolers Detect Their Number Conservation Errors. Child Development Research, 2014, 2014, 1-7.	1.9	18
12	Structural brain correlates of executive engagement in working memory: Children's inter-individual differences are reflected in the anterior insular cortex. Neuropsychologia, 2013, 51, 1145-1150.	1.6	17
13	Inhibitory control is needed for the resolution of arithmetic word problems: A developmental negative priming study Journal of Educational Psychology, 2013, 105, 701-708.	2.9	58
14	Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study. Frontiers in Psychology, 2013, 4, 197.	2.1	11
15	Dynamics of the Anatomical Changes That Occur in the Brains of Schoolchildren as They Learn to Read. PLoS ONE, 2013, 8, e81789.	2.5	18
16	How to best train children and adolescents for fMRI? Meta-analysis of the training methods in developmental neuroimaging. Neuroeducation, 2013, 2, 44-70.	0.3	3
17	Is human decision making under ambiguity guided by loss frequency regardless of the costs? A developmental study using the Soochow Gambling Task. Journal of Experimental Child Psychology, 2012, 113, 286-294.	1.4	34
18	Une pédagogie du contrÃ1e cognitif pour l'amélioration de l'attention à la consigne chez l'enfan 4.5 mm Name description 2012 de 2015 de 1	t de 0.3	16

4-5 ans. Neuroeducation, 2012, 1, 29-54.

Amélie Lubin

#	Article	IF	CITATIONS
19	Apprendre à inhiber : une pédagogie innovante au service des apprentissages scolaires fondamentaux (mathématiques et orthographe) chez des élÃïves de 6 à 11 ans. Neuroeducation, 2012, 1, 55-84.	0.3	21
20	Functional magnetic resonance imaging study of Piaget's conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 2011, 110, 332-346.	1.4	91
21	The Shift from Local to Global Visual Processing in 6-Year-Old Children Is Associated with Grey Matter Loss. PLoS ONE, 2011, 6, e20879.	2.5	54
22	Evidence of Different Developmental Trajectories for Length Estimation According to Egocentric and Allocentric Viewpoints in Children and Adults. Experimental Psychology, 2011, 58, 142-146.	0.7	15
23	Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI metaâ€analysis of 52 studies including 842 children. Developmental Science, 2010, 13, 876-885.	2.4	237
24	Pedagogical Effect of Action on Arithmetic Performances in Wynn-Like Tasks Solved by 2-Year-Olds. Experimental Psychology, 2010, 57, 405-411.	0.7	11
25	Adult brains don't fully overcome biases that lead to incorrect performance during cognitive development: an fMRI study in young adults completing a Piagetâ€like task. Developmental Science, 2009, 12, 326-338.	2.4	91
26	Math in actions: Actor mode reveals the true arithmetic abilities of French-speaking 2-year-olds in a magic task. Journal of Experimental Child Psychology, 2009, 103, 376-385.	1.4	8
27	Language-specific effects on number computation in toddlers: A European cross-linguistic cartography. Cognitive Development, 2006, 21, 11-16.	1.3	7