
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4922227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semi-paracrystallinity in semi-conducting polymers. Materials Horizons, 2022, 9, 1196-1206.	6.4	18
2	GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?. Materials, 2022, 15, 841.	1.3	13
3	Epoxy Doped, Nanoâ€scale Phaseâ€separated Polyâ€Acrylates with Potential in 3D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000558.	1.7	2
4	Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers, 2021, 13, 1202.	2.0	8
5	Bio-Based Polyurethane Networks Derived from Liquefied Sawdust. Materials, 2021, 14, 3138.	1.3	8
6	Phase distribution changes of neat unsaturated polyester resin and their effects on both thermal stability and dynamicâ€mechanical properties. Journal of Applied Polymer Science, 2021, 138, 51308.	1.3	4
7	Sequential Crystallization and Multicrystalline Morphology in PE- <i>b</i> -PEO- <i>b</i> -PCL- <i>b</i> -PLLA Tetrablock Quarterpolymers. Macromolecules, 2021, 54, 7244-7257.	2.2	8
8	Comparative study of nano and macro mechanical properties of cellulose triacetate based nanocomposites by mean of quantitative nanomechanical mapping and mechanical testing. Composites Science and Technology, 2021, 211, 108851.	3.8	4
9	Morphology, Thermo-Mechanical Properties and Biodegradibility of PCL/PLA Blends Reactively Compatibilized by Different Organic Peroxides. Materials, 2021, 14, 4205.	1.3	7
10	Cost-Effectively 3D-Printed Rigid and Versatile Interpenetrating Polymer Networks. Materials, 2021, 14, 4544.	1.3	4
11	Preparation of Well-Compatibilized PP/PC Blends and Foams Thereof. ACS Applied Polymer Materials, 2021, 3, 5509-5516.	2.0	9
12	Upconversion 3D Printed Composite with Multifunctional Applications for Tissue Engineering and Photodynamic Therapy. Journal of the Brazilian Chemical Society, 2020, , .	0.6	1
13	Polyfluoroalkyl-silica porous coatings with high antireflection properties and low surface free energy for glass in solar energy application. Applied Surface Science, 2020, 509, 144864.	3.1	13
14	Improvement of macroscale properties of TiO2/cellulose acetate hybrid films by solvent vapour annealing. Carbohydrate Polymers, 2020, 231, 115683.	5.1	14
15	Photo-active chitosan-based hybrid films. European Polymer Journal, 2020, 122, 109373.	2.6	5
16	Optimization of adhesive performance of waterborne poly(urethane-urea)s for adhesion on high and low surface energy surfaces. Progress in Organic Coatings, 2020, 140, 105495.	1.9	7
17	Morphology and Physicochemical Properties of Branched Polyurethane/Biopolymer Blends. Polymers, 2020, 12, 16.	2.0	11
18	Origin of Transcrystallinity and Nucleation Kinetics in Polybutene-1/Fiber Composites. Macromolecules, 2020, 53, 8940-8950.	2.2	17

#	Article	IF	CITATIONS
19	Mechanical properties and field performance of hydrophobic antireflective sol-gel coatings on the cover glass of photovoltaic modules. Solar Energy Materials and Solar Cells, 2020, 216, 110694.	3.0	23
20	An Ideal Spin Filter: Long-Range, High-Spin Selectivity in Chiral Helicoidal 3-Dimensional Metal Organic Frameworks. Nano Letters, 2020, 20, 8476-8482.	4.5	47
21	Hydrogels based on waterborne poly(urethane-urea)s by physically cross-linking with sodium alginate and calcium chloride. Carbohydrate Polymers, 2020, 250, 116940.	5.1	25
22	Creating a Green Chemistry Lab: Towards Sustainable Resource Management and Responsible Purchasing. Sustainability, 2020, 12, 8934.	1.6	3
23	Predicted Studies of Branched and Cross-Linked Polyurethanes Based on Polyhydroxybutyrate with Polycaprolactone Triol in Soft Segments. Polymers, 2020, 12, 1068.	2.0	12
24	Dual-curable stereolithography resins for superior thermomechanical properties. EXPRESS Polymer Letters, 2020, 14, 881-894.	1.1	18
25	Transparent and Flexible Cellulose Triacetate–TiO ₂ Nanoparticles with Conductive and UV-Shielding Properties. Journal of Physical Chemistry C, 2020, 124, 4242-4251.	1.5	21
26	Effect of γ-Fe ₂ O ₃ Nanoparticles on the Cross-Linking and Final Properties of PVA/Citric Acid-Based Nanocomposites. Journal of Physical Chemistry C, 2020, 124, 5444-5451.	1.5	5
27	Optical Properties of Vanadium Oxide/Cellulose Triacetate Photochromic Films. , 2020, 69, .		0
28	Self-Healable Nanocomposites with Enhanced Thermal Stability by Incorporation of TiO ₂ Nanoparticles to Waterborne Poly(urethane-urea) Matrices Based on Amphiphilic Triblock Copolymers. Journal of Physical Chemistry C, 2019, 123, 21290-21298.	1.5	7
29	Nucleation of Poly(lactide) on the Surface of Different Fibers. Macromolecules, 2019, 52, 6274-6284.	2.2	35
30	Microscopic Analysis of Unsaturated Polyester Resin–Based Composites and Nanocomposites. , 2019, , 275-311.		0
31	Improvement of Mechanical Properties and Self-Healing Efficiency by Ex-Situ Incorporation of TiO2 Nanoparticles to a Waterborne Poly(Urethane-Urea). Polymers, 2019, 11, 1209.	2.0	9
32	Nucleation and Crystallization of PA6 Composites Prepared by T-RTM: Effects of Carbon and Glass Fiber Loading. Polymers, 2019, 11, 1680.	2.0	22
33	Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers. Journal of Materials Science: Materials in Electronics, 2019, 30, 16956-16965.	1.1	3
34	Hydrophobic and spectrally broadband antireflective methyl-silylated silica coatings with high performance stability for concentrated solar applications. Solar Energy Materials and Solar Cells, 2019, 200, 109962.	3.0	18
35	Isothermal Crystallization Kinetics and Morphology of Double Crystalline PCL/PBS Blends Mixed with a Polycarbonate/MWCNTs Masterbatch. Polymers, 2019, 11, 682.	2.0	10
36	Antireflective mesoporous silica coatings by optimization of water content in acid-catalyzed sol-gel method for application in glass covers of concentrated photovoltaic modules. Journal of Colloid and Interface Science, 2019, 534, 370-380.	5.0	25

#	Article	IF	CITATIONS
37	Tuning photoresponsive and dielectric properties of PVA/CdSe films by capping agent change. Composites Part A: Applied Science and Manufacturing, 2019, 118, 194-201.	3.8	10
38	Flexible photochromic cellulose triacetate based bionanocomposites modified with sol-gel synthesized V2O5 nanoparticles. Carbohydrate Polymers, 2019, 208, 50-58.	5.1	15
39	Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 2018, 151, 36-51.	2.7	62
40	Synthesis and characterization of environmentally-friendly waterborne poly(urethane-urea)s. European Polymer Journal, 2018, 99, 240-249.	2.6	15
41	Nanostructure development in polystyrene-b -polybutadiene-b -poly(methyl methacrylate) (SBM) thin films by atomic force microscopy: Effect of copolymer composition and solvent. Polymer Engineering and Science, 2018, 58, 422-429.	1.5	2
42	Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydrate Polymers, 2018, 179, 126-134.	5.1	87
43	Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 2018, 179, 341-349.	5.1	94
44	Reactive extrusion of bio-based polymer blends and composites – Current trends and future developments. EXPRESS Polymer Letters, 2018, 12, 24-57.	1.1	100
45	Broadband antireflective coating stack based on mesoporous silica by acid-catalyzed sol-gel method for concentrated photovoltaic application. Solar Energy Materials and Solar Cells, 2018, 186, 154-164.	3.0	32
46	Triblock copolymers containing hydrophilic PEO blocks as effective polyols for organic solvent-free waterborne poly(urethane-urea)s. Reactive and Functional Polymers, 2018, 131, 1-11.	2.0	13
47	Morphology, Nucleation, and Isothermal Crystallization Kinetics of Poly(Butylene Succinate) Mixed with a Polycarbonate/MWCNT Masterbatch. Polymers, 2018, 10, 424.	2.0	14
48	New electroactive macromonomers and multi-responsive PEDOT graft copolymers. Polymer Chemistry, 2018, 9, 3780-3790.	1.9	15
49	Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Industrial Crops and Products, 2018, 122, 637-646.	2.5	74
50	Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2017, 81, 114-126.	1.1	12
51	Transparent nanostructured cellulose acetate films based on the self assembly of PEO-b-PPO-b-PEO block copolymer. Carbohydrate Polymers, 2017, 165, 437-443.	5.1	17
52	Nanostructured polymer blends based on polystyreneâ€ <i>bâ€</i> polybutadieneâ€ <i>b</i> â€poly(methyl) Tj ET homopolymers. Polymer International, 2017, 66, 1031-1036.	[Qq0 0 0 r 1.6	rgBT /Overlock 4
53	Optimization of the electrospinning processingâ€window to fabricate nanostructured PEâ€bâ€PEO and hybrid PEâ€bâ€PEO/EBBA fibers. Polymer Engineering and Science, 2017, 57, 1157-1167.	1.5	6
54	Quantitative nanomechanical property mapping of epoxy thermosetting system modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer. Polymer Testing, 2017, 57, 38-41.	2.3	13

#	Article	IF	CITATIONS
55	Optical sensor platform based on cellulose nanocrystals (CNC) – 4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydrate Polymers, 2017, 168, 346-355.	5.1	26
56	Optical reversible behavior of poly(ethylene- b -ethylene oxide) block copolymer dispersed liquid crystal blends. European Polymer Journal, 2017, 91, 187-196.	2.6	4
57	Strain sensitive conductive polyurethane foam/graphene nanocomposites prepared by impregnation method. European Polymer Journal, 2017, 90, 323-333.	2.6	16
58	Synthesis and factorial design applied to a novel chitosan/sodium polyphosphate nanoparticles via ionotropic gelation as an RGD delivery system. Carbohydrate Polymers, 2017, 157, 1695-1702.	5.1	40
59	Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer. Macromolecules, 2017, 50, 7268-7281.	2.2	32
60	Fabrication of Biocompatible, Functional, and Transparent Hybrid Films Based on Silk Fibroin and Epoxy Silane for Biophotonics. ACS Applied Materials & Interfaces, 2017, 9, 27905-27917.	4.0	18
61	Thin Film Nanocomposites Based on SBM Triblock Copolymer and Silver Nanoparticles: Morphological and Dielectric Analysis. Macromolecular Materials and Engineering, 2017, 302, 1700169.	1.7	5
62	Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide. Chemical Papers, 2017, 71, 2243-2251.	1.0	9
63	PE-b-PEO block copolymer nanostructured thermosetting systems as template for TiO 2 nanoparticles. European Polymer Journal, 2017, 94, 87-98.	2.6	5
64	Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading. Composites Part A: Applied Science and Manufacturing, 2017, 93, 33-40.	3.8	46
65	Morphology, Nucleation, and Isothermal Crystallization Kinetics of Poly(Îμ-caprolactone) Mixed with a Polycarbonate/MWCNTs Masterbatch. Polymers, 2017, 9, 709.	2.0	20
66	Degradability of cross-linked polyurethanes/chitosan composites. Polimery, 2017, 62, 567-575.	0.4	7
67	Rheology of Epoxy/Block-Copolymer Blends. , 2017, , 955-977.		0
68	A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers, 2016, 153, 406-420.	5.1	250
69	Chapter 5 Nanostructured Epoxy-Based Thermosetting Materials Modified with Amphiphilic Block Copolymers. , 2016, , 141-172.		Ο
70	Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, 2016, 152, 841-849.	5.1	54
71	Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response. Carbohydrate Polymers, 2016, 143, 188-197.	5.1	11
72	Thermal and optical behavior of poly(ethylene-b-ethylene oxide) block copolymer dispersed liquid crystals blends. European Polymer Journal, 2016, 74, 148-157.	2.6	8

#	Article	IF	CITATIONS
73	Rheology of Epoxy/Block Copolymer Blends. , 2016, , 1-24.		Ο
74	Enhancement of the mechanical properties at the macro and nanoscale of thermosetting systems modified with a polystyrene-block-polymethyl methacrylate block copolymer. RSC Advances, 2015, 5, 102085-102095.	1.7	9
75	Microbial Cellulose $\hat{a} {\in} "$ Biosynthesis Mechanisms and Medical Applications. , 2015, , .		13
76	Photoresponsive Multilayer Films of Chitosan and an Azopolymer. Journal of Renewable Materials, 2015, 3, 49-55.	1.1	2
77	Nano- and Macroscale Structural and Mechanical Properties of in Situ Synthesized Bacterial Cellulose/PEO- <i>b</i> -PPO- <i>b</i> -PEO Biocomposites. ACS Applied Materials & Interfaces, 2015, 7, 4142-4150.	4.0	36
78	Fabrication and Characterization of Light-responsive Multilayer Films of Chitosan and Azopolymer. Materials Today: Proceedings, 2015, 2, 336-344.	0.9	0
79	Biocellulose-based flexible magnetic paper. Journal of Applied Physics, 2015, 117, 17B734.	1.1	24
80	Effect of Iron Oxide Nanocrystal Content on the Morphology and Magnetic Properties of Polystyrene- <i>block</i> -poly(methyl methacrylate) Diblock Copolymer Based Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 6435-6445.	1.5	4
81	Hybrid materials based on azopolymer and sol–gel synthesized silver-containing titanium oxide nanoparticles with photoinduced birefringence. RSC Advances, 2015, 5, 15740-15748.	1.7	7
82	The effect of TiO2 nanocrystal shape on the electrical properties of poly(styrene-b-methyl) Tj ETQq0 0 0 rgBT /Ove 2015, 184, 8-16.	erlock 10 ⁻ 2.6	Tf 50 387 Td 5
83	Effect of carboxylated poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer on nanostructured unsaturated polyester resin. RSC Advances, 2015, 5, 96170-96180.	1.7	3
84	Electrostatic force microscopy measurements of CdSe-PS nanoparticles and CdSe-PS/poly(styrene-b-butadiene-b-styrene) nanocomposites. Colloid and Polymer Science, 2014, 292, 229-234.	1.0	10
85	Morphological and mechanical study of nanostructured epoxy systems modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)triblock copolymer. Polymer, 2014, 55, 738-745.	1.8	56
86	Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates. Soft Matter, 2014, 10, 1676-1684.	1.2	20
87	Optically Active Multilayer Films Based on Chitosan and an Azopolymer. Biomacromolecules, 2014, 15, 1399-1407.	2.6	19

88

#	Article	IF	CITATIONS
91	Lewy Bodies under Atomic Force Microscope. Ultrastructural Pathology, 2014, 38, 1-5.	0.4	5
92	Quantitative Nanoelectrical and Nanomechanical Properties of Nanostructured Hybrid Composites by PeakForce Tunneling Atomic Force Microscopy. Journal of Physical Chemistry C, 2014, 118, 1206-1212.	1.5	16
93	Relationship between the Morphology of Nanostructured Unsaturated Polyesters Modified with PEO- <i>b</i> -PPO- <i>b</i> -PEO Triblock Copolymer and Their Optical and Mechanical Properties. Journal of Physical Chemistry C, 2013, 117, 3563-3571.	1.5	23
94	Unsaturated Polyester Nanocomposites modified with fibrillated cellulose and PEO-b-PPO-b-PEO block copolymer. Composites Science and Technology, 2013, 89, 120-126.	3.8	28
95	Multifunctional hybrid nanopapers based on bacterial cellulose and sol–gel synthesized titanium/vanadium oxide nanoparticles. Cellulose, 2013, 20, 1301-1311.	2.4	40
96	Enhanced stability of photo-induced anisotropy due to intermolecular interactions in an azo-prepolymer confined in block copolymer. European Polymer Journal, 2013, 49, 984-990.	2.6	9
97	Rutile TiO ₂ Nanoparticles Dispersed in a Self-Assembled Polystyrene- <i>block</i> -polymethyl Methacrylate Diblock Copolymer Template. Journal of Physical Chemistry C, 2013, 117, 1151-1156.	1.5	12
98	Local environment influence on the optical properties of block copolymers containing an epoxy-based azo-prepolymer. European Polymer Journal, 2013, 49, 3702-3712.	2.6	1
99	Nanostructured Thermoplastic Elastomers Based on SBS Triblock Copolymer Stiffening with Low Contents of Epoxy System. Morphological Behavior and Mechanical Properties. Macromolecules, 2013, 46, 3444-3451.	2.2	45
100	Functionalisation of CdSe Semiconductor Nanoparticles with Polystyrene Brushes by Radical Polimerization. Journal of Nanoscience and Nanotechnology, 2013, 13, 643-648.	0.9	7
101	Tailored Morphologies of Poly(styrene-block-butadiene-block-methyl methacrylate) Triblock Copolymers and Their Blends with Polystyrene Homopolymers. Macromolecular Symposia, 2012, 321-322, 124-129.	0.4	0
102	Multifunctional Nanostructured Composites Based on TiO ₂ Nanoparticles. Macromolecular Symposia, 2012, 321-322, 99-104.	0.4	2
103	Conductive Photoswitchable Vanadium Oxide Nanopaper based on Bacterial Cellulose. ChemSusChem, 2012, 5, 2323-2327.	3.6	37
104	Nanostructured unsaturated polyester modified with poly[(ethylene oxide)-b-(propylene) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50,222 Td (e
105	Conductive properties of TiO2/bacterial cellulose hybrid fibres. Journal of Colloid and Interface Science, 2012, 377, 88-93.	5.0	64
106	Transparent titanium dioxide/block copolymer modified epoxy-based systems in the long scale microphase separation threshold. European Polymer Journal, 2012, 48, 16-25.	2.6	21

107	Reversible Optical Storage Properties of Nanostructured Epoxy-Based Thermosets Modified with Azobenzene Units. Macromolecules, 2011, 44, 9738-9746.	2.2	19
108	Conductive Properties of Photoluminescent Au/Ps- <i>b</i> PEO Inorganic/Organic Hybrids Containing Nematic Liquid Crystals. Journal of Physical Chemistry C, 2011, 115, 1643-1648.	1.5	8

7

#	Article	IF	CITATIONS
109	Cellulose Nanocrystals and Au Nanoparticles Well-Dispersed in a Poly(styrene- <i>b</i> -ethylene oxide) Block Copolymer Matrix. Journal of Physical Chemistry C, 2011, 115, 22180-22185.	1.5	10
110	Morphological and optical behavior of thermoset matrix composites varying both polystyrene-block-poly(ethylene oxide) and TiO2 nanoparticle content. Polymer, 2011, 52, 5699-5707.	1.8	27
111	Electrical properties of TiO2/SEO nanocomposites: From macro to nano. Electrochimica Acta, 2011, 56, 5582-5586.	2.6	3
112	Surfactant addition effects on dispersion and microdomain orientation in SBS triblock copolymer/alumina nanoparticle composites. European Polymer Journal, 2011, 47, 1240-1249.	2.6	15
113	Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene) copolymers and silver nanoparticles. EXPRESS Polymer Letters, 2011, 5, 104-118.	1.1	24
114	Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites. Composites Science and Technology, 2010, 70, 1106-1112.	3.8	39
115	Mapping of carbon nanotubes in the polystyrene domains of a polystyrene-b-polyisoprene-b-polystyrene block copolymer matrix using electrostatic force microscopy. Carbon, 2010, 48, 2590-2595.	5.4	22
116	Conductive Behavior of High TiO ₂ Nanoparticle Content of Inorganic/Organic Nanostructured Composites. Journal of the American Chemical Society, 2010, 132, 873-878.	6.6	40
117	Transparent Nanostructured Thermoset Composites Containing Well-Dispersed TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 22424-22430.	1.5	26
118	Conductive Properties of Switchable Photoluminescence Thermosetting Systems Based on Liquid Crystals. Langmuir, 2010, 26, 4296-4302.	1.6	8
119	Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites. Journal of Materials Science, 2009, 44, 1287-1293.	1.7	14
120	Molecular dynamics of an epoxy resin modified with an epoxidized poly(styrene–butadiene) linear block copolymer during cure and microphase separation processes. European Polymer Journal, 2009, 45, 1046-1057.	2.6	27
121	Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. European Polymer Journal, 2009, 45, 2096-2109.	2.6	196
122	Thermoresponsive inorganic/organic hybrids based on conductive TiO2 nanoparticles embedded in poly(styrene-b-ethylene oxide) block copolymer dispersed liquid crystals. Acta Materialia, 2009, 57, 4624-4631.	3.8	17
123	Morphology Development in Thermosetting Mixtures through the Variation on Chemical Functionalization Degree of Poly(styrene- <i>b</i> -butadiene) Diblock Copolymer Modifiers. Thermomechanical Properties. Macromolecules, 2009, 42, 6215-6224.	2.2	79
124	Conductive Properties of Inorganic and Organic TiO2/Polystyrene-block-Poly(ethylene oxide) Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 8601-8605.	1.5	27
125	Confinement of Functionalized Graphene Sheets by Triblock Copolymers. Journal of Physical Chemistry C, 2009, 113, 17973-17978.	1.5	38
126	Arrangement of Conductive TiO ₂ Nanoparticles in Hybrid Inorganic/Organic Thermosetting Materials Using Liquid Crystal. Macromolecules, 2009, 42, 3386-3390.	2.2	33

#	Article	IF	CITATIONS
127	The effect of thermal and vapor annealing treatments on the self-assembly of TiO ₂ /PS-b-PMMA nanocomposites generated via the sol–gel process. Nanotechnology, 2009, 20, 225603.	1.3	24
128	Surfactant Effects on Morphology-Properties Relationships of Silver-poly(styrene- <i>b</i> -isoprene- <i>b</i> -styrene) Block Copolymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2128-2139.	0.9	10
129	Morphological analysis of self-assembled SIS block copolymer matrices containing silver nanoparticles. Composites Science and Technology, 2008, 68, 1631-1636.	3.8	23
130	Micro―and macrophase separation of thermosetting systems modified with epoxidized styreneâ€ <i>block</i> â€butadiene― <i>block</i> â€styrene linear triblock copolymers and their influence on final mechanical properties. Polymer International, 2008, 57, 1333-1342.	1.6	47
131	Selfâ€Assembling of SBS Block Copolymers as Templates for Conductive Silver Nanocomposites. Macromolecular Materials and Engineering, 2008, 293, 568-573.	1.7	34
100	Polymer dispersed liquid crystals based on poly(styreneâ€ <i>b</i> â€ethylene oxide), poly(bisphenol a) Tj ETQq0	0	
132	diagrams and morphologies generated. Journal of Applied Polymer Science, 2008, 108, 1116-1125.	1.3	18
133	Thermoresponsive meso/nanostructured thermosetting materials based on PS-b-PEO block copolymer-dispersed liquid crystal: Curing behavior and morphological variation. Acta Materialia, 2008, 56, 5112-5122.	3.8	17
134	Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol–gel synthesis. Nanotechnology, 2008, 19, 155607.	1.3	62
135	Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal. Nanotechnology, 2008, 19, 275701.	1.3	13
136	Self-Assembled Nanomaterials Using Magnetic Nanoparticles Modified with Polystyrene Brushes and Poly(styrene- <i>b</i> -butadiene- <i>b</i> -styrene). Macromolecules, 2008, 41, 9295-9298.	2.2	29
137	Relationships between the Morphology and Thermoresponsive Behavior in Micro/Nanostructured Thermosetting Matrixes Containing a 4′-(Hexyloxy)-4-biphenylcarbonitrile Liquid Crystal. Langmuir, 2008, 24, 11216-11224.	1.6	15
138	Nanostructuration via Solvent Vapor Exposure of Poly(2-vinyl pyridine- <i>b</i> -methyl methacrylate) Nanocomposites Using Modified Magnetic Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 14343-14347.	1.5	19
139	Structure and Properties of a Semifluorinated Diblock Copolymer Modified Epoxy Blend. Macromolecules, 2007, 40, 4068-4074.	2.2	88
140	Curing Behavior and Final Properties of Nanostructured Thermosetting Systems Modified with Epoxidized Styreneâ€Butadiene Linear Diblock Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 2281-2292.	1.1	92
141	Multifunctional Thermally Reversible Nanostructured Thermosetting Materials Based on Block Copolymers Dispersed Liquid Crystal. Macromolecular Rapid Communications, 2007, 28, 937-941.	2.0	22
142	Selfâ€Assembling Nanomaterials using Magnetic Nanoparticles Modified with Polystyrene Brushes. Macromolecular Rapid Communications, 2007, 28, 2361-2365.	2.0	33
143	Self-assembled block copolymers as matrix for multifunctional materials modified with low-molecular-weight liquid crystals. Acta Materialia, 2007, 55, 6436-6443.	3.8	21
144	PALS study of epoxy matrices: self-assembly of block copolymers and its capability for nanostructuring thermosetting systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3690-3699.	0.8	4

#	Article	IF	CITATIONS
145	Functionalization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 925-932.	2.5	65
146	Generation of core/shell iron oxide magnetic nanoparticles with polystyrene brushes by atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 4744-4750.	2.5	31
147	Mechanical properties–morphology relationships in nano-/microstructured epoxy matrices modified with PEO–PPO–PEO block copolymers. Polymer International, 2007, 56, 1392-1403.	1.6	59
148	Nanostructured Thermosetting Systems by Modification with Epoxidized Styreneâ^'Butadiene Star Block Copolymers. Effect of Epoxidation Degree. Macromolecules, 2006, 39, 2254-2261.	2.2	136
149	Thermally reversible materials based on thermosetting systems modified with polymer dispersed liquid crystals for optoelectronic application. Polymers for Advanced Technologies, 2006, 17, 835-840.	1.6	23
150	Thermally reversible nanostructured thermosetting blends modified with poly(ethylene-b-ethylene) Tj ETQq0 0 0	rgBT/Over 2.0	lock 10 Tf 5(
151	Viscoelastic behavior of thermosetting epoxy mixtures modified with syndiotactic polystyrene during network formation. Journal of Applied Polymer Science, 2006, 100, 2348-2355.	1.3	25
152	Influence of PS-b-PEO diblock copolymers on the compatibility of syndiotactic polystyrene modified epoxy blends. Journal of Applied Polymer Science, 2006, 102, 479-488.	1.3	6
153	Nanostructured Thermosetting Systems from Epoxidized Styrene Butadiene Block Copolymers. Macromolecular Rapid Communications, 2005, 26, 982-985.	2.0	87
154	Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Composites Science and Technology, 2005, 65, 2189-2197.	3.8	39
155	Phase separation and rheological behavior during curing of an epoxy resin modified with syndiotactic polystyrene. Polymer Engineering and Science, 2005, 45, 303-313.	1.5	23
156	Study of thermal property changes of biopol/polyamide 11 blends during biodegradation in compost. Journal of Thermal Analysis and Calorimetry, 2003, 74, 605-608.	2.0	5
157	Dynamic Mechanical Thermal Analysis of Polyamide 6/Biopol Blends. , 2000, 60, 313-317.		3
158	DSC Studies on Melting and Crystallization of Polyamide 6/Biopol Blends. , 2000, 60, 117-121.		3
159	Nanostructured Thermoset Composites Containing Conductive TiO ₂ Nanoparticles. Materials Science Forum, 0, 714, 147-152.	0.3	1
160	Conductive Properties of Inorganic/Organic Nanostructured Systems Based on Block Copolymers. Materials Science Forum, 0, 714, 153-158.	0.3	4
161	Variation On The Properties Of Silver Nanoparticles Nanocomposites Based On SIS And SBS Block Copolymer. , 0, , 295-302.		0