List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4921433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective butanol production from carbon monoxide by an enriched anaerobic culture. Science of the Total Environment, 2022, 806, 150579.	3.9	13
2	Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri. Journal of Environmental Management, 2022, 302, 113992.	3.8	26
3	Influence of feedstock mix ratio on microbial dynamics during acidogenic fermentation for polyhydroxyalkanoates production. Journal of Environmental Management, 2022, 303, 114132.	3.8	16
4	Engineering <i>Acetobacterium woodii</i> for the production of isopropanol and acetone from carbon dioxide and hydrogen. Biotechnology Journal, 2022, 17, e2100515.	1.8	18
5	Bioproduction of acetic acid from carbon dioxide as single substrate and zero valent iron (ZVI) by clostridia. Journal of CO2 Utilization, 2022, 58, 101915.	3.3	5
6	Effect of Endogenous and Exogenous Butyric Acid on Butanol Production From CO by Enriched Clostridia. Frontiers in Bioengineering and Biotechnology, 2022, 10, 828316.	2.0	2
7	Valorization of agro-industrial wastes to produce volatile fatty acids: combined effect of substrate/inoculum ratio and initial alkalinity. Environmental Technology (United Kingdom), 2021, 42, 3889-3899.	1.2	12
8	Treatment of waste gas contaminated with dichloromethane using photocatalytic oxidation, biodegradation and their combinations. Journal of Hazardous Materials, 2021, 405, 123735.	6.5	19
9	Autotrophic (C1-gas) versus heterotrophic (fructose) accumulation of acetic acid and ethanol in Clostridium aceticum. Bioresource Technology, 2021, 337, 125485.	4.8	17
10	Co-digestion of cheese whey with sewage sludge for caproic acid production: Role of microbiome and polyhydroxyalkanoates potential production. Bioresource Technology, 2021, 337, 125388.	4.8	19
11	Carbon dioxide bioconversion into single cell oils (lipids) in two reactors inoculated with Acetobacterium woodii and Rhodosporidium toruloides. Journal of CO2 Utilization, 2021, 52, 101668.	3.3	14
12	Polyhydroxyalkanoates production from syngas fermentation effluents: Effect of nitrogen availability. Journal of Environmental Chemical Engineering, 2021, 9, 106662.	3.3	9
13	Enhanced Ethanol Production From Carbon Monoxide by Enriched Clostridium Bacteria. Frontiers in Microbiology, 2021, 12, 754713.	1.5	5
14	Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresource Technology, 2020, 300, 122659.	4.8	47
15	Valorization of sewage sludge in co-digestion with cheese whey to produce volatile fatty acids. Waste Management, 2020, 118, 541-551.	3.7	15
16	Effect of tungsten and selenium on C1 gas bioconversion by an enriched anaerobic sludge and microbial community analysis. Chemosphere, 2020, 250, 126105.	4.2	20
17	Cheese whey fermentation into volatile fatty acids in an anaerobic sequencing batch reactor. Bioresource Technology, 2020, 308, 123226.	4.8	43
18	Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. Bioresource Technology, 2019, 292, 121941.	4.8	41

#	Article	IF	CITATIONS
19	Syngas Fermentation for Bioethanol and Bioproducts. , 2019, , 207-221.		7
20	Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresource Technology, 2019, 291, 121817.	4.8	62
21	Effect of salinity on C1-gas fermentation by Clostridium carboxidivorans producing acids and alcohols. AMB Express, 2019, 9, 110.	1.4	10
22	Influence of electron acceptors on hexanoic acid production by Clostridium kluyveri. Journal of Environmental Management, 2019, 242, 515-521.	3.8	33
23	Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresource Technology, 2019, 280, 387-395.	4.8	49
24	Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols. Bioresource Technology, 2019, 272, 130-136.	4.8	38
25	Gas-Phase Bioreactors. , 2019, , 446-463.		1
26	Volatile fatty acids production from cheese whey: influence of pH, solid retention time and organic loading rate. Journal of Chemical Technology and Biotechnology, 2018, 93, 1742-1747.	1.6	22
27	Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresource Technology, 2018, 253, 227-234.	4.8	35
28	Organic loading rate effect on the acidogenesis of cheese whey: a comparison between UASB and SBR reactors. Environmental Technology (United Kingdom), 2018, 39, 3046-3054.	1.2	19
29	Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks. Journal of Hazardous Materials, 2017, 324, 100-109.	6.5	59
30	Hâ€Bâ€E (hexanolâ€butanolâ€ethanol) fermentation for the production of higher alcohols from syngas/waste gas. Journal of Chemical Technology and Biotechnology, 2017, 92, 712-731.	1.6	109
31	Effect of <scp>pH</scp> control on the anaerobic Hâ€B‣ fermentation of syngas in bioreactors. Journal of Chemical Technology and Biotechnology, 2017, 92, 1178-1185.	1.6	38
32	Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans. World Journal of Microbiology and Biotechnology, 2017, 33, 43.	1.7	56
33	Integrated bioconversion of syngas into bioethanol and biopolymers. Bioresource Technology, 2017, 239, 244-249.	4.8	59
34	Anaerobic digestion of tuna waste for the production of volatile fatty acids. Waste Management, 2017, 68, 96-102.	3.7	72
35	Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans. Bioresource Technology, 2017, 244, 552-559.	4.8	29
36	Performance of a thermophilic gas-phase biofilter treating high BTEX loads under steady- and transient-state operation. International Biodeterioration and Biodegradation, 2017, 119, 289-298.	1.9	41

#	Article	IF	CITATIONS
37	Optimization of polyhydroxyalkanoate storage using mixed cultures and brewery wastewater. Journal of Chemical Technology and Biotechnology, 2016, 91, 2817-2826.	1.6	46
38	Bioethanol production from biomass: carbohydrate vs syngas fermentation. Journal of Chemical Technology and Biotechnology, 2016, 91, 304-317.	1.6	129
39	Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols. Applied Microbiology and Biotechnology, 2016, 100, 4231-4240.	1.7	48
40	Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum. Fuel, 2016, 178, 56-62.	3.4	60
41	Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia. Applied Energy, 2016, 169, 210-217.	5.1	55
42	Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Applied Microbiology and Biotechnology, 2016, 100, 3361-3370.	1.7	86
43	Microorganisms Application for Volatile Compounds Degradation. , 2016, , 183-196.		0
44	Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors. International Journal of Environmental Research and Public Health, 2015, 12, 1029-1043.	1.2	29
45	Influence of polymeric materials on the performance of a mesophilic biotrickling filter treating an αâ€pinene contaminated gas stream. Journal of Chemical Technology and Biotechnology, 2015, 90, 658-668.	1.6	6
46	Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresource Technology, 2015, 186, 122-127.	4.8	116
47	Transient-state studies and neural modeling of the removal of a gas-phase pollutant mixture in a biotrickling filter. Journal of Hazardous Materials, 2014, 269, 45-55.	6.5	19
48	Optimization of the performance of a thermophilic biotrickling filter for α-pinene removal from polluted air. Environmental Technology (United Kingdom), 2014, 35, 2466-2475.	1.2	6
49	Influence of solid polymers on the response of multi-phase bioreactors treating α-pinene-polluted air. New Biotechnology, 2014, 31, 475-481.	2.4	4
50	Waste gas treatment in bioreactors: environmental engineering aspects. Journal of Environmental Engineering and Science, 2014, 9, 20-28.	0.3	1
51	Steady- and transient-state performance of a thermophilic suspended-growth bioreactor for α-pinene removal from polluted air. Chemosphere, 2013, 93, 2914-2921.	4.2	10
52	Optimization of the landfill leachate treatment by the <scp>F</scp> enton process. Water and Environment Journal, 2013, 27, 120-126.	1.0	16
53	One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: Performance and microbial community analysis. Bioresource Technology, 2013, 138, 245-252.	4.8	39
54	Novel Bioreactors for Waste Gas Treatment. Environmental Chemistry for A Sustainable World, 2012, , 121-170.	0.3	6

MARÃA C VEIGA

#	Article	IF	CITATIONS
55	Biogas Technologies and Cleaning Techniques. Environmental Chemistry for A Sustainable World, 2012, , 347-377.	0.3	21
56	Combined biological and physicochemical waste-gas cleaning techniques. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 920-939.	0.9	26
57	Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors. Journal of Biotechnology, 2012, 157, 554-563.	1.9	25
58	Evaluation of the biomethane potential of solid fish waste. Waste Management, 2012, 32, 1347-1352.	3.7	70
59	Use of Styrene as Sole Carbon Source by the Fungus Exophiala oligosperma: Optimization and Modeling of Biodegradation, Pathway Elucidation, and Cell Membrane Composition. Applied Biochemistry and Biotechnology, 2012, 168, 1351-1371.	1.4	6
60	Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification. Bioresource Technology, 2012, 116, 204-213.	4.8	89
61	Biological conversion of carbon monoxide to ethanol: Effect of pH, gas pressure, reducing agent and yeast extract. Bioresource Technology, 2012, 114, 518-522.	4.8	93
62	Biodegradation of Mono-Aromatic Hydrocarbons by Fungi. Environmental Science and Engineering, 2012, , 177-188.	0.1	3
63	Performance Evaluation and Neural Modeling of Gas-Phase Styrene Removal in One- and Two-Liquid Phase Suspended-Growth Bioreactors. Industrial & Engineering Chemistry Research, 2011, 50, 6485-6495.	1.8	14
64	A Comparative Study of Physical and Chemical Processes for Removal of Biomass in Biofilters. Molecules, 2011, 16, 6927-6949.	1.7	15
65	Neural network models for biological waste-gas treatment systems. New Biotechnology, 2011, 29, 56-73.	2.4	28
66	Biotreatment of a gas-phase volatile mixture from fibreglass and composite manufacturing industries. New Biotechnology, 2011, 29, 46-55.	2.4	2
67	Characterization of absorbent polymers for the removal of volatile hydrophobic pollutants from air. Journal of Chemical Technology and Biotechnology, 2011, 86, 47-53.	1.6	26
68	Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioproducts and Biorefining, 2011, 5, 93-114.	1.9	201
69	Styrene removal from polluted air in one and two-liquid phase biotrickling filter: Steady and transient-state performance and pressure drop control. Bioresource Technology, 2011, 102, 6791-6800.	4.8	63
70	Bioplastic production using wood mill effluents as feedstock. Water Science and Technology, 2011, 63, 1196-1202.	1.2	37
71	Steady―and transientâ€state operation of a twoâ€stage bioreactor for the treatment of a gaseous mixture of hydrogen sulphide, methanol and αâ€pinene. Journal of Chemical Technology and Biotechnology, 2010, 85, 336-348.	1.6	35
72	Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus. Journal of Hazardous Materials, 2010, 184, 204-214.	6.5	45

#	Article	IF	CITATIONS
73	Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of α-pinene. Bioresource Technology, 2010, 101, 9493-9499.	4.8	50
74	Performance of a fungal monolith bioreactor for the removal of styrene from polluted air. Bioresource Technology, 2010, 101, 2608-2615.	4.8	40
75	The SHARON process in the treatment of landfill leachate. Water Science and Technology, 2010, 61, 47-52.	1.2	26
76	Valuable product production from wood mill effluents. Water Science and Technology, 2010, 62, 2294-2300.	1.2	14
77	Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: Impact of pollutant load and transient operation. Chemosphere, 2010, 79, 221-227.	4.2	69
78	Twoâ€stage gasâ€phase bioreactor for the combined removal of hydrogen sulphide, methanol and αâ€pinene. Environmental Technology (United Kingdom), 2009, 30, 1261-1272.	1.2	33
79	Experimental and neural model analysis of styrene removal from polluted air in a biofilter. Journal of Chemical Technology and Biotechnology, 2009, 84, 941-948.	1.6	48
80	Bioprocesses for air pollution control. Journal of Chemical Technology and Biotechnology, 2009, 84, 1419-1436.	1.6	218
81	Performance of a biofilter for the removal of high concentrations of styrene under steady and non-steady state conditions. Journal of Hazardous Materials, 2009, 168, 282-290.	6.5	50
82	Optimization of the treatment of carbon monoxide-polluted air in biofilters. Chemosphere, 2009, 74, 332-337.	4.2	24
83	Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Research, 2009, 43, 11-20.	5.3	91
84	Waste gas treatment in bioreactors: environmental engineering aspectsThis article is one of a selection of papers published in this Special Issue on Biological Air Treatment Canadian Journal of Civil Engineering, 2009, 36, 1887-1894.	0.7	22
85	Removal of methanol from air in a low-pH trickling monolith bioreactor. Process Biochemistry, 2008, 43, 925-931.	1.8	33
86	Effect of phenol on the biological treatment of wastewaters from a resin producing industry. Bioresource Technology, 2008, 99, 3507-3512.	4.8	14
87	Removal of formaldehyde, methanol, dimethylether and carbon monoxide from waste gases of synthetic resin-producing industries. Chemosphere, 2008, 70, 1357-1365.	4.2	43
88	FORMALDEHYDE BIODEGRADATION AND ITS EFFECT ON THE DENITRIFICATION PROCESS. Environmental Technology (United Kingdom), 2007, 28, 1027-1033.	1.2	1
89	Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions. Chemosphere, 2007, 68, 1186-1193.	4.2	63
90	Fungal biofiltration of α-pinene: Effects of temperature, relative humidity, and transient loads. Biotechnology and Bioengineering, 2007, 96, 433-443.	1.7	77

#	Article	IF	CITATIONS
91	Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors. Biotechnology and Bioengineering, 2007, 97, 1423-1438.	1.7	92
92	Combined post-ozonation and biological treatment of recalcitrant wastewater from a resin-producing factory. Journal of Hazardous Materials, 2007, 143, 285-290.	6.5	37
93	Performance optimization of the fungal biodegradation of α-pinene in gas-phase biofilter. Process Biochemistry, 2006, 41, 1722-1728.	1.8	88
94	Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters. Journal of Hazardous Materials, 2006, 138, 543-548.	6.5	27
95	Formaldehyde biodegradation in the presence of methanol under denitrifying conditions. Journal of Chemical Technology and Biotechnology, 2006, 81, 312-317.	1.6	7
96	Development of a Novel Monolith-Bioreactor for the Treatment of VOC-polluted Air. Environmental Technology (United Kingdom), 2006, 27, 1271-1277.	1.2	29
97	Simultaneous nitrification and formaldehyde biodegradation in an activated sludge unit. Bioresource Technology, 2005, 96, 1914-1918.	4.8	36
98	Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnology and Bioengineering, 2005, 92, 462-471.	1.7	53
99	Bioprocesses for the removal of nitrogen oxides from polluted air. Journal of Chemical Technology and Biotechnology, 2005, 80, 483-494.	1.6	130
100	Autotrophic deodorization of hydrogen sulfide in a biotrickling filter. Journal of Chemical Technology and Biotechnology, 2005, 80, 998-1004.	1.6	68
101	Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Applied Microbiology and Biotechnology, 2005, 67, 563-568.	1.7	71
102	Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 33-37.	1.4	63
103	Biodegradation and effect of formaldehyde and phenol on the denitrification process. Water Research, 2005, 39, 449-455.	5.3	53
104	Treatment of gas-phase methanol in conventional biofilters packed with lava rock. Water Research, 2005, 39, 2385-2393.	5.3	37
105	Phenol biodegradation and its effect on the nitrification process. Water Research, 2005, 39, 2915-2920.	5.3	90
106	Biofiltration of waste gases containing a mixture of formaldehyde and methanol. Applied Microbiology and Biotechnology, 2004, 65, 235-42.	1.7	54
107	Formaldehyde biodegradation and its inhibitory effect on nitrification. Journal of Chemical Technology and Biotechnology, 2004, 79, 499-504.	1.6	29
108	Coliform concentration reduction and related performance evaluation of a down-flow anaerobic fixed bed reactor treating low-strength saline wastewater. Bioresource Technology, 2004, 94, 119-127.	4.8	32

#	Article	IF	CITATIONS
109	Hydrodynamic behaviour and comparison of technologies for the removal of excess biomass in gas-phase biofilters. Water Research, 2004, 38, 404-413.	5.3	60
110	Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Research, 2004, 38, 3495-3502.	5.3	35
111	Fungal biocatalysts in the biofiltration of VOC-polluted air. Journal of Biotechnology, 2004, 113, 305-319.	1.9	208
112	Biofiltration of waste gases in a reactor with a split-feed. Journal of Chemical Technology and Biotechnology, 2003, 78, 703-708.	1.6	17
113	Optimization of nutrient supply in a downflow gas-phase biofilter packed with an inert carrier. Applied Microbiology and Biotechnology, 2002, 59, 567-573.	1.7	34
114	Inert filter media for the biofiltration of waste gases – characteristics and biomass control. Reviews in Environmental Science and Biotechnology, 2002, 1, 201-214.	3.9	79
115	Parameters affecting performance and modeling of biofilters treating alkylbenzene-polluted air. Applied Microbiology and Biotechnology, 2001, 55, 254-258.	1.7	38
116	Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology, 2001, 78, 181-185.	4.8	113
117	Fundamentals of Air Pollution. Environmental Pollution, 2001, , 3-15.	0.4	6
118	Conventional Biofilters. Environmental Pollution, 2001, , 47-98.	0.4	26
119	Biofilter performance and characterization of a biocatalyst degrading alkylbenzene gases. Biodegradation, 1999, 10, 169-176.	1.5	45
120	Methanogenic and perchloroethylene-dechlorinating activity of anaerobic granular sludge. Applied Microbiology and Biotechnology, 1998, 50, 484-488.	1.7	15
121	Sludge Granulation in UASB Digesters Treating Low Strength Wastewaters at Mesophilic and Psychrophilic Temperatures. Environmental Technology (United Kingdom), 1997, 18, 1133-1141.	1.2	10
122	Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Bioresource Technology, 1997, 60, 251-258.	4.8	116
123	Synthesis of pyrimido[4′,5′:4,5]thieno[2,3-c]-pyridazine derivatives. Monatshefte Für Chemie, 1996, 127, 537-547.	0.9	5
124	Synthesis of new pyridazino[4?,3?:4,5]-thieno[3,2-d]-1,2,3-triazine and pyrimido[4?,5?:4,5]thieno[2,3-c]pyridazine derivatives. Monatshefte Für Chemie, 1996, 127, 1037-1043.	0.9	6
125	Kinetics of growth of Lactobacillus plantarum with glucose, organic acids (malate, citrate, acetate) and ethanol. Biotechnology Letters, 1995, 17, 899-904.	1.1	7
126	A double-feed anaerobic filter for the treatment of high strength wastewaters. Biotechnology Letters, 1994, 8, 77-82.	0.5	8

#		IE	CITATIONS
#	ARTICLE	IF	CITATIONS
127	Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate. Applied and Environmental Microbiology, 1991, 57, 1046-1051.	1.4	42
128	A new device for measurement and control of gas production by bench scale anaerobic digesters. Water Research, 1990, 24, 1551-1554.	5.3	53
129	Semiâ€micro C.O.D. determination method for highâ€salinity wastewater. Environmental Technology Letters, 1989, 10, 541-548.	0.4	64
130	Artificial Neural Network Modelling for Waste. , 0, , 224-263.		2

9