
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4921311/publications.pdf Version: 2024-02-01

SANDRO FUZZI

#	Article	IF	CITATIONS
1	Flood or Drought: How Do Aerosols Affect Precipitation?. Science, 2008, 321, 1309-1313.	6.0	1,682
2	Biogenically driven organic contribution to marine aerosol. Nature, 2004, 431, 676-680.	13.7	890
3	A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 2004, 38, 2579-2595.	1.9	801
4	Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 1999, 401, 257-259.	13.7	686
5	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	1.9	641
6	A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 2004, 38, 2561-2577.	1.9	494
7	Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophysical Research Letters, 2008, 35, .	1.5	380
8	Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach. Journal of Geophysical Research, 2000, 105, 1481-1489.	3.3	371
9	Important Source of Marine Secondary Organic Aerosol from Biogenic Amines. Environmental Science & Technology, 2008, 42, 9116-9121.	4.6	349
10	Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmospheric Environment, 2000, 34, 4853-4857.	1.9	289
11	Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics, 2010, 10, 7515-7531.	1.9	252
12	Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10013-10018.	3.3	243
13	Partitioning of the organic aerosol component between fog droplets and interstitial air. Journal of Geophysical Research, 1999, 104, 26821-26832.	3.3	193
14	Cloud condensation nucleus production from nucleation events at a highly polluted region. Geophysical Research Letters, 2005, 32, .	1.5	179
15	Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. Advances in Meteorology, 2010, 2010, 1-10.	0.6	175
16	Source Attribution of Water-Soluble Organic Aerosol by Nuclear Magnetic Resonance Spectroscopy. Environmental Science & Technology, 2007, 41, 2479-2484.	4.6	157
17	High frequency new particle formation in the Himalayas. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15666-15671.	3.3	142
18	Chemical composition of PM ₁₀ and PM ₁ at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.). Atmospheric Chemistry and Physics, 2010, 10, 4583-4596.	1.9	141

#	Article	IF	CITATIONS
19	Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmospheric Environment, 2014, 99, 587-598.	1.9	137
20	Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season. Journal of Geophysical Research, 2007, 112, .	3.3	128
21	Simplification of the representation of the organic component of atmospheric particulates. Faraday Discussions, 2005, 130, 341.	1.6	118
22	The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Science of the Total Environment, 2008, 391, 252-261.	3.9	115
23	Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy. Atmospheric Chemistry and Physics, 2012, 12, 8401-8421.	1.9	101
24	Fog scavenging of organic and inorganic aerosol in the Po Valley. Atmospheric Chemistry and Physics, 2014, 14, 6967-6981.	1.9	98
25	Molecular Characterization of the Water-Soluble Organic Compounds in Fogwater by ESIMS/MS. Environmental Science & Technology, 2003, 37, 1229-1240.	4.6	97
26	Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes. Geophysical Research Letters, 2008, 35, .	1.5	93
27	Is chlorophyllâ€ <i>a</i> the best surrogate for organic matter enrichment in submicron primary marine aerosol?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4964-4973.	1.2	89
28	Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. Journal of Geophysical Research, 2011, 116, .	3.3	86
29	Light absorption properties of brown carbon in the high Himalayas. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9621-9639.	1.2	83
30	Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 489-504.	0.8	77
31	Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?. Scientific Reports, 2015, 5, 14883.	1.6	75
32	Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years?. Atmospheric Research, 2002, 64, 89-98.	1.8	66
33	Biological fluid dynamics of airborne COVID-19 infection. Rendiconti Lincei, 2020, 31, 505-537.	1.0	65
34	Heterogeneous processes in the Po Valley radiation fog. Journal of Geophysical Research, 1988, 93, 11141-11151.	3.3	64
35	Air quality and climate change: Designing new win-win policies for Europe. Environmental Science and Policy, 2016, 65, 48-57.	2.4	60
36	Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. Atmospheric Chemistry and Physics, 2014, 14, 25-45.	1.9	53

#	Article	IF	CITATIONS
37	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. Atmospheric Chemistry and Physics, 2012, 12, 941-959.	1.9	51
38	Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (¹ H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy). Atmospheric Chemistry and Physics, 2014, 14, 5089-5110.	1.9	51
39	Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. Atmospheric Chemistry and Physics, 2017, 17, 7721-7731.	1.9	48
40	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. Atmospheric Chemistry and Physics, 2020, 20, 1233-1254.	1.9	45
41	NMR Determination of Total Carbonyls and Carboxyls: A Tool for Tracing the Evolution of Atmospheric Oxidized Organic Aerosols. Environmental Science & Technology, 2008, 42, 4844-4849.	4.6	42
42	Chemical Characterization and Source Apportionment of Size-Segregated Aerosol Collected at an Urban Site in Sicily. Water, Air, and Soil Pollution, 2007, 185, 311-321.	1.1	39
43	Modelling individual preferences for environmental policy drivers: Empirical evidence of Italian lifestyle changes using a latent class approach. Environmental Science and Policy, 2016, 65, 65-74.	2.4	33
44	Public perception of air pollution sources across Europe. Ambio, 2021, 50, 1150-1158.	2.8	31
45	Wet deposition due to fog in the Po Valley, Italy. Journal of Atmospheric Chemistry, 1985, 3, 289-296.	1.4	30
46	3-year chemical composition of free tropospheric PM1 at the Mt. Cimone GAW global station – South Europe – 2165Âm a.s.l Atmospheric Environment, 2014, 87, 218-227.	1.9	30
47	An automated fog water collector suitable for deposition networks: Design, operation and field tests. Water, Air, and Soil Pollution, 1997, 93, 383-394.	1.1	28
48	The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion. Atmospheric Research, 2001, 58, 231-265.	1.8	28
49	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
50	Indoor air pollution exposure effects on lung and cardiovascular health in the High Himalayas, Nepal: An observational study. European Journal of Internal Medicine, 2019, 61, 81-87.	1.0	26
51	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign. Atmospheric Chemistry and Physics, 2015, 15, 11327-11340.	1.9	23
52	Comments on "Influence of Soluble Surfactant Properties on the Activation of Aerosol Particles Containing Inorganic Soluteâ€: Journals of the Atmospheric Sciences, 2001, 58, 1465-1467.	0.6	21
53	On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy. Science of the Total Environment, 2014, 485-486, 103-109.	3.9	21
54	Measurements of the partitioning of hydrogen peroxide in a stratiform cloud*. Tellus, Series B: Chemical and Physical Meteorology, 2022, 43, 280.	0.8	20

#	Article	IF	CITATIONS
55	Determination of formaldehyde as its lutidine derivative in the atmospheric liquid phase by high-performance liquid chromatography. Journal of Chromatography A, 1985, 333, 262-268.	1.8	18
56	An automatic station for fog water collection. Atmospheric Environment Part A General Topics, 1990, 24, 2609-2614.	1.3	16
57	Chemistry of carbonyl compounds in Po Valley fog water. Science of the Total Environment, 1990, 91, 79-86.	3.9	16
58	Partitioning of Metals between the Aqueous Phase and Suspended Insoluble Material in Fog Droplets. Annali Di Chimica, 2005, 95, 275-290.	0.6	15
59	Behaviour of H2O2, NH3, and black carbon in mixed-phase clouds during CIME. Atmospheric Research, 2001, 58, 315-336.	1.8	12
60	In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy. Atmospheric Chemistry and Physics, 2014, 14, 1075-1092.	1.9	12
61	An anion-exchange high-performance liquid chromatography method coupled to total organic carbon determination for the analysis of water-soluble organic aerosols. Journal of Chromatography A, 2007, 1149, 385-389.	1.8	11
62	Comment on "On the use of anion exchange chromatography for the characterization of water soluble organic carbon―by H. Chang et al Geophysical Research Letters, 2005, 32, .	1,5	10
63	Behaviour of 3-methyl-2-benzothiazolone azines of carbonyl compounds in high-performance liquid chromatography. Journal of Chromatography A, 1987, 387, 459-466.	1.8	9
64	Historical Changes in Seasonal Aerosol Acidity in the Po Valley (Italy) as Inferred from Fog Water and Aerosol Measurements. Environmental Science & Technology, 2021, 55, 7307-7315.	4.6	9
65	Extractable iron and organic matter in the suspended insoluble material of fog droplets. Water, Air, and Soil Pollution, 2006, 174, 303-320.	1.1	5
66	Air quality from a social perspective in four European metropolitan areas: Research hypothesis and evidence from the SEFIRA project. Environmental Science and Policy, 2016, 65, 58-64.	2.4	4
67	Reconstructing Elemental Carbon Long-Term Trend in the Po Valley (Italy) from Fog Water Samples. Atmosphere, 2020, 11, 580.	1.0	4
68	Title is missing!. Water, Air, and Soil Pollution, 1997, 93, 383-394.	1.1	3
69	Analytical formulas for the below-cloud scavenging coefficient of an irreversibly soluble gas: a quantitative evaluation for HNO _{3. International Journal of Environment and Pollution, 2004, 21, 547.}	0.2	3
70	Characterization of atmospheric particulate matter over the eastern Mediterranean sea. Journal of Aerosol Science, 1989, 20, 1241-1244.	1.8	2
71	The pH of fog. Journal of Aerosol Science, 1983, 14, 298-301.	1.8	1
72	10 The ABC-Pyramid: a scientific laboratory at 5079 m a.s.l. for the study of atmospheric composition change and climate. Developments in Earth Surface Processes, 2007, 10, 67-75.	2.8	1

#	Article	IF	CITATIONS
73	Overview of the biogenic sources of atmospheric trace compounds due to agricultural activities. Aerobiologia, 1996, 12, 129-132.	0.7	Ο
74	9 Merging regional and global chemistry, air quality and global change: SHARE-Asia in the context of the IGAC project. Developments in Earth Surface Processes, 2007, 10, 59-65.	2.8	0