Simon G Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4921079/publications.pdf Version: 2024-02-01

SIMON C THOMPSON

#	Article	IF	CITATIONS
1	Measuring inconsistency in meta-analyses. BMJ: British Medical Journal, 2003, 327, 557-560.	2.3	47,117
2	Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 2013, 37, 658-665.	1.3	2,705
3	Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology, 2017, 32, 377-389.	5.7	1,696
4	Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine, 1999, 18, 2693-2708.	1.6	1,478
5	Avoiding bias from weak instruments in Mendelian randomization studies. International Journal of Epidemiology, 2011, 40, 755-764.	1.9	1,416
6	Endovascular versus Open Repair of Abdominal Aortic Aneurysm. New England Journal of Medicine, 2010, 362, 1863-1871.	27.0	1,242
7	Bias due to participant overlap in twoâ€ s ample Mendelian randomization. Genetic Epidemiology, 2016, 40, 597-608.	1.3	961
8	C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction. New England Journal of Medicine, 2012, 367, 1310-1320.	27.0	909
9	A review of instrumental variable estimators for Mendelian randomization. Statistical Methods in Medical Research, 2017, 26, 2333-2355.	1.5	821
10	Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology, 2017, 28, 30-42.	2.7	820
11	Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. European Journal of Epidemiology, 2015, 30, 543-552.	5.7	799
12	Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Statistics in Medicine, 2016, 35, 1880-1906.	1.6	593
13	Re: "Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects― American Journal of Epidemiology, 2015, 181, 290-291.	3.4	377
14	Endovascular or open repair strategy for ruptured abdominal aortic aneurysm: 30 day outcomes from IMPROVE randomised trial. BMJ, The, 2014, 348, f7661-f7661.	6.0	367
15	Use of allele scores as instrumental variables for Mendelian randomization. International Journal of Epidemiology, 2013, 42, 1134-1144.	1.9	351
16	Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. International Journal of Epidemiology, 2015, 44, 484-495.	1.9	263
17	Correcting for regression dilution bias: comparison of methods for a single predictor variable. Journal of the Royal Statistical Society Series A: Statistics in Society, 2000, 163, 173-189.	1.1	242
18	Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk. Circulation, 2020, 142, 621-642.	1.6	232

SIMON G THOMPSON

#	Article	IF	CITATIONS
19	Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45â€^000 donors. Lancet, The, 2017, 390, 2360-2371.	13.7	222
20	Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ, The, 2012, 345, e7325-e7325.	6.0	212
21	Randomised controlled trial of follow up care in general practice of patients with myocardial infarction and angina: final results of the Southampton heart integrated care project (SHIP). BMJ: British Medical Journal, 1999, 318, 706-711.	2.3	200
22	Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiology, 2019, 4, 163.	6.1	187
23	Surveillance Intervals for Small Abdominal Aortic Aneurysms. JAMA - Journal of the American Medical Association, 2013, 309, 806.	7.4	178
24	Can meta-analysis help target interventions at individuals most likely to benefit?. Lancet, The, 2005, 365, 341-346.	13.7	144
25	Morphological suitability for endovascular repair, non-intervention rates, and operative mortality in women and men assessed for intact abdominal aortic aneurysm repair: systematic reviews with meta-analysis. Lancet, The, 2017, 389, 2482-2491.	13.7	129
26	Joint modelling of longitudinal and timeâ€ŧoâ€event data with application to predicting abdominal aortic aneurysm growth and rupture. Biometrical Journal, 2011, 53, 750-763.	1.0	106
27	Analysing the relationship between treatment effect and underlying risk in meta-analysis: comparison and development of approaches. Statistics in Medicine, 2000, 19, 3251-3274.	1.6	102
28	lssues relating to confounding and metaâ€analysis when including nonâ€randomized studies in systematic reviews on the effects of interventions. Research Synthesis Methods, 2013, 4, 26-35.	8.7	99
29	Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. European Heart Journal, 2019, 40, 621-631.	2.2	97
30	Aortic Aneurysm Diameter and Risk of Cardiovascular Mortality. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1203-1207.	2.4	89
31	Metaâ€analysis using multilevel models with an application to the study of class size effects. Journal of the Royal Statistical Society Series C: Applied Statistics, 2000, 49, 399-412.	1.0	88
32	Using Multivariable Mendelian Randomization to Disentangle the Causal Effects of Lipid Fractions. PLoS ONE, 2014, 9, e108891.	2.5	86
33	Analysing repeated measurements data: a practical comparison of methods. , 1999, 18, 1587-1603.		75
34	Inflammatory markers and extent and progression of early atherosclerosis: Meta-analysis of individual-participant-data from 20 prospective studies of the PROG-IMT collaboration. European Journal of Preventive Cardiology, 2016, 23, 194-205.	1.8	74
35	The effect of aortic morphology on peri-operative mortality of ruptured abdominal aortic aneurysm. European Heart Journal, 2015, 36, 1328-1334.	2.2	71
36	Carotid Intima-Media Thickness Progression and Risk of Vascular Events in People With Diabetes: Results From the PROG-IMT Collaboration. Diabetes Care, 2015, 38, 1921-1929.	8.6	67

SIMON G THOMPSON

#	Article	IF	CITATIONS
37	Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Statistics in Medicine, 2012, 31, 1582-1600.	1.6	64
38	Analysis of clinical benefit, harms, and cost-effectiveness of screening women for abdominal aortic aneurysm. Lancet, The, 2018, 392, 487-495.	13.7	59
39	Parity, breastfeeding and risk of coronary heart disease: A pan-European case–cohort study. European Journal of Preventive Cardiology, 2016, 23, 1755-1765.	1.8	58
40	Predictive value for cardiovascular events of common carotid intima media thickness and its rate of change in individuals at high cardiovascular risk – Results from the PROG-IMT collaboration. PLoS ONE, 2018, 13, e0191172.	2.5	51
41	The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study. Statistics in Medicine, 2017, 36, 4514-4528.	1.6	44
42	Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis. American Journal of Epidemiology, 2017, 186, 899-907.	3.4	42
43	A joint analysis of quality of life and survival using a random effect selection model. Statistics in Medicine, 2000, 19, 3237-3250.	1.6	34
44	Normative values for carotid intima media thickness and its progression: Are they transferrable outside of their cohort of origin?. European Journal of Preventive Cardiology, 2016, 23, 1165-1173.	1.8	33
45	Multilevel models for cost-effectiveness analyses that use cluster randomised trial data: An approach to model choice. Statistical Methods in Medical Research, 2016, 25, 2036-2052.	1.5	24
46	UK Biobank comes of age. Lancet, The, 2015, 386, 509-510.	13.7	22
47	Genetic invalidation of Lp-PLA2 as a therapeutic target: Large-scale study of five functional Lp-PLA2-lowering alleles. European Journal of Preventive Cardiology, 2017, 24, 492-504.	1.8	22
48	Strategy of endovascular versus open repair for patients with clinical diagnosis of ruptured abdominal aortic aneurysm: the IMPROVE RCT. Health Technology Assessment, 2018, 22, 1-122.	2.8	22
49	Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening. Medical Decision Making, 2018, 38, 439-451.	2.4	20
50	Screening women aged 65 years or over for abdominal aortic aneurysm: a modelling study and health economic evaluation. Health Technology Assessment, 2018, 22, 1-142.	2.8	20
51	Recruitment and representativeness of blood donors in the INTERVAL randomised trial assessing varying inter-donation intervals. Trials, 2016, 17, 458.	1.6	17
52	Longer-term efficiency and safety of increasing the frequency of whole blood donation (INTERVAL): extension study of a randomised trial of 20â€^757 blood donors. Lancet Haematology,the, 2019, 6, e510-e520.	4.6	17
53	Letter to the Editor: The merits of matching in community intervention trials: a cautionary tale by N. Klar and A. Donner,Statistics in Medicine,16, 1753-1764 (1997). , 1998, 17, 2149-2151.		10
54	A method making fewer assumptions gave the most reliable estimates of exposure–outcome associations in stratified case–cohort studies. Journal of Clinical Epidemiology, 2015, 68, 1397-1405.	5.0	10

SIMON G THOMPSON

#	Article	IF	CITATIONS
55	Progression of conventional cardiovascular risk factors and vascular disease risk in individuals: insights from the PROG-IMT consortium. European Journal of Preventive Cardiology, 2020, 27, 234-243.	1.8	10
56	Explaining heterogeneity in metaâ€analysis: a comparison of methods. Statistics in Medicine, 1999, 18, 2693-2708.	1.6	9
57	Modeling the costs and long-term health benefits of screening the general population for risks of cardiovascular disease: a review of methods used in the literature. European Journal of Health Economics, 2016, 17, 1041-1053.	2.8	8
58	Explaining heterogeneity in meta-analysis: a comparison of methods. , 1999, 18, 2693.		7
59	Metabolic mediators of body-mass index and cardiovascular risk. Lancet, The, 2014, 383, 2042-2043.	13.7	3
60	Analysing the relationship between treatment effect and underlying risk in meta-analysis: comparison and development of approaches. , 2000, 19, 3251.		1
61	Abdominal aortic aneurysms in women – Authors' reply. Lancet, The, 2017, 390, 1643-1644.	13.7	0
62	Lessons from the INTERVAL study $\hat{a} \in$ "Authors' reply. Lancet, The, 2018, 391, 2606.	13.7	0