Hua Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4920928/publications.pdf

Version: 2024-02-01

		136740	106150
116	4,924 citations	32	65
papers	citations	h-index	g-index
119	119	119	5477
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	MedEx: a medication information extraction system for clinical narratives. Journal of the American Medical Informatics Association: JAMIA, 2010, 17, 19-24.	2.2	427
2	CLAMP – a toolkit for efficiently building customized clinical natural language processing pipelines. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 331-336.	2.2	257
3	Deep learning in clinical natural language processing: a methodical review. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 457-470.	2.2	251
4	A systematic analysis of FDA-approved anticancer drugs. BMC Systems Biology, 2017, 11, 87.	3.0	235
5	A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Journal of the American Medical Informatics Association: JAMIA, 2011, 18, 601-606.	2.2	223
6	Enhancing clinical concept extraction with contextual embeddings. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1297-1304.	2.2	195
7	Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 179-191.	2.2	178
8	Automated Acquisition of Disease-Drug Knowledge from Biomedical and Clinical Documents: An Initial Study. Journal of the American Medical Informatics Association: JAMIA, 2008, 15, 87-98.	2.2	172
9	The CHEMDNER corpus of chemicals and drugs and its annotation principles. Journal of Cheminformatics, 2015, 7, S2.	2.8	166
10	Understanding patientâ€provider communication entered via a patient portal system. Proceedings of the American Society for Information Science and Technology, 2012, 49, 1-4.	0.2	140
11	Entity recognition from clinical texts via recurrent neural network. BMC Medical Informatics and Decision Making, 2017, 17, 67.	1.5	135
12	Extracting psychiatric stressors for suicide from social media using deep learning. BMC Medical Informatics and Decision Making, 2018, 18, 43.	1.5	112
13	A hybrid system for temporal information extraction from clinical text. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 828-835.	2.2	99
14	A study of active learning methods for named entity recognition in clinical text. Journal of Biomedical Informatics, 2015, 58, 11-18.	2.5	95
15	Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks. BioMed Research International, 2014, 2014, 1-6.	0.9	94
16	Development and evaluation of an ensemble resource linking medications to their indications. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 954-961.	2.2	92
17	Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Medical Informatics and Decision Making, 2013, 13, S1.	1.5	88
18	Applying active learning to high-throughput phenotyping algorithms for electronic health records data. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e253-e259.	2.2	85

#	Article	IF	CITATIONS
19	A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 13-21.	2.2	81
20	A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. Journal of Biomedical Informatics, 2018, 84, 11-16.	2.5	80
21	CNN-based ranking for biomedical entity normalization. BMC Bioinformatics, 2017, 18, 385.	1.2	77
22	Facilitating pharmacogenetic studies using electronic health records and natural-language processing: a case study of warfarin. Journal of the American Medical Informatics Association: JAMIA, 2011, 18, 387-391.	2.2	74
23	CD-REST: a system for extracting chemical-induced disease relation in literature. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw036.	1.4	68
24	Association of Hemoglobin A _{1c} Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin. JAMA Network Open, 2018, 1, e181755.	2.8	54
25	Learning from local to global: An efficient distributed algorithm for modeling time-to-event data. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1028-1036.	2.2	46
26	A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD). Journal of the American Medical Informatics Association: JAMIA, 2017, 24, e79-e86.	2.2	45
27	COVID-19 SignSym: a fast adaptation of a general clinical NLP tool to identify and normalize COVID-19 signs and symptoms to OMOP common data model. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1275-1283.	2.2	44
28	Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases. AMIA Annual Symposium proceedings, 2011, 2011, 1564-72.	0.2	44
29	Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. BMC Medical Informatics and Decision Making, 2019, 19, 22.	1.5	38
30	Risk of angioedema associated with levetiracetam compared with phenytoin: Findings of the observational health data sciences and informatics research network. Epilepsia, 2017, 58, e101-e106.	2.6	37
31	A study of transportability of an existing smoking status detection module across institutions. AMIA Annual Symposium proceedings, 2012, 2012, 577-86.	0.2	36
32	Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data. The Lancet Digital Health, 2022, 4, e415-e425.	5.9	35
33	Applying active learning to assertion classification of concepts in clinical text. Journal of Biomedical Informatics, 2012, 45, 265-272.	2.5	34
34	Assisted annotation of medical free text using RapTAT. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 833-841.	2.2	34
35	Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study. Journal of Medical Internet Research, 2020, 22, e16981.	2.1	34
36	Associations of lipid profiles with insulin resistance and \hat{l}^2 cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation. PLoS ONE, 2017, 12, e0172221.	1.1	33

#	Article	IF	Citations
37	Ease of adoption of clinical natural language processing software: An evaluation of five systems. Journal of Biomedical Informatics, 2015, 58, S189-S196.	2.5	32
38	A Study of Neural Word Embeddings for Named Entity Recognition in Clinical Text. AMIA Annual Symposium proceedings, 2015, 2015, 1326-33.	0.2	32
39	Applying active learning to supervised word sense disambiguation in MEDLINE. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 1001-1006.	2.2	29
40	A hybrid approach to automatic de-identification of psychiatric notes. Journal of Biomedical Informatics, 2017, 75, S19-S27.	2.5	29
41	UTHealth at SemEval-2016 Task 12: an End-to-End System for Temporal Information Extraction from Clinical Notes. , 2016 , , .		29
42	Colorectal cancer drug target prediction using ontology-based inference and network analysis. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	1.4	28
43	A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. Journal of Cheminformatics, 2015, 7, S8.	2.8	26
44	A comparative study of disease genes and drug targets in the human protein interactome. BMC Bioinformatics, 2015, 16, S1.	1.2	26
45	Gastrointestinal hormone secretion in women with polycystic ovary syndrome: an observational study. Human Reproduction, 2015, 30, 2639-2644.	0.4	25
46	Discovery of Noncancer Drug Effects on Survival in Electronic Health Records of Patients With Cancer: A New Paradigm for Drug Repurposing. JCO Clinical Cancer Informatics, 2019, 3, 1-9.	1.0	25
47	Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw049.	1.4	24
48	The application of artificial intelligence and data integration in COVID-19 studies: a scoping review. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2050-2067.	2.2	24
49	Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 750-757.	2.2	23
50	Associations of apolipoprotein B/apolipoprotein A-I ratio with pre-diabetes and diabetes risks: a cross-sectional study in Chinese adults. BMJ Open, 2017, 7, e014038.	0.8	22
51	Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1393-1400.	2.2	22
52	How do we share data in COVID-19 research? A systematic review of COVID-19 datasets in PubMed Central Articles. Briefings in Bioinformatics, 2021, 22, 800-811.	3.2	22
53	Syntactic parsing of clinical text: guideline and corpus development with handling ill-formed sentences. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 1168-1177.	2.2	20
54	Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge. Journal of Biomedical Informatics, 2017, 75, S129-S137.	2.5	20

#	Article	IF	CITATIONS
55	Domain adaptation for semantic role labeling of clinical text. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 967-979.	2.2	19
56	Identifying direct temporal relations between time and events from clinical notes. BMC Medical Informatics and Decision Making, 2018, 18, 49.	1.5	19
57	Exploring temporal suicidal behavior patterns on social media: Insight from Twitter analytics. Health Informatics Journal, 2020, 26, 738-752.	1.1	19
58	Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1593-1599.	2.2	19
59	Electronic Health Records for Drug Repurposing: Current Status, Challenges, and Future Directions. Clinical Pharmacology and Therapeutics, 2020, 107, 712-714.	2.3	19
60	Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature. BMC Systems Biology, 2016, 10, 67.	3.0	18
61	Cost-aware active learning for named entity recognition in clinical text. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1314-1322.	2.2	18
62	Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text. BMC Medical Informatics and Decision Making, 2019, 19, 236.	1.5	18
63	Comparison of Therapeutic Effects of TREK1 Blockers and Fluoxetine on Chronic Unpredicted Mild Stress Sensitive Rats. ACS Chemical Neuroscience, 2018, 9, 2824-2831.	1.7	17
64	Time-sensitive clinical concept embeddings learned from large electronic health records. BMC Medical Informatics and Decision Making, 2019, 19, 58.	1.5	17
65	Are synthetic clinical notes useful for real natural language processing tasks: A case study on clinical entity recognition. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2193-2201.	2.2	17
66	An active learning-enabled annotation system for clinical named entity recognition. BMC Medical Informatics and Decision Making, 2017, 17, 82.	1.5	16
67	Time event ontology (TEO): to support semantic representation and reasoning of complex temporal relations of clinical events. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1046-1056.	2.2	16
68	PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 345-352.	2.2	15
69	BERT-based Ranking for Biomedical Entity Normalization. AMIA Summits on Translational Science Proceedings, 2020, 2020, 269-277.	0.4	13
70	The UMLS knowledge sources at 30: indispensable to current research and applications in biomedical informatics. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1499-1501.	2.2	12
71	COVID-19 TestNorm: A tool to normalize COVID-19 testing names to LOINC codes. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1437-1442.	2.2	12
72	Dyslipidemia Is Related to Mortality in Critical Patients With Coronavirus Disease 2019: A Retrospective Study. Frontiers in Endocrinology, 2021, 12, 611526.	1.5	12

#	Article	IF	CITATIONS
73	Combining corpus-derived sense profiles with estimated frequency information to disambiguate clinical abbreviations. AMIA Annual Symposium proceedings, 2012, 2012, 1004-13.	0.2	12
74	Identifying the status of genetic lesions in cancer clinical trial documents using machine learning. BMC Genomics, 2012, 13, S21.	1.2	11
75	Remote limb ischemic post-conditioning attenuates ischemia-reperfusion injury in rat skin flapby limiting oxidative stress. Acta Cirurgica Brasileira, 2016, 31, 15-21.	0.3	11
76	UTH-CCB: The Participation of the SemEval 2015 Challenge – Task 14. , 2015, , .		11
77	Recognizing Medication related Entities in Hospital Discharge Summaries using Support Vector Machine. Proceedings - International Conference on Computational Linguistics, 2010, 2010, 259-266.	1.0	11
78	The Glutamatergic Postrhinal Cortex–Ventrolateral Orbitofrontal Cortex Pathway Regulates Spatial Memory Retrieval. Neuroscience Bulletin, 2019, 35, 447-460.	1.5	10
79	Psychiatric stressor recognition from clinical notes to reveal association with suicide. Health Informatics Journal, 2019, 25, 1846-1862.	1.1	10
80	Privacy-protecting, reliable response data discovery using COVID-19 patient observations. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1765-1776.	2.2	10
81	Robustly Pre-Trained Neural Model for Direct Temporal Relation Extraction. , 2021, , .		10
82	Parsing clinical text: how good are the state-of-the-art parsers?. BMC Medical Informatics and Decision Making, 2015, 15, S2.	1.5	9
83	Using Ontology Fingerprints to disambiguate gene name entities in the biomedical literature. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav034-bav034.	1.4	9
84	DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models. Nature Communications, 2022, 13, 1678.	5.8	9
85	Adapting a natural language processing tool to facilitate clinical trial curation for personalized cancer therapy. AMIA Summits on Translational Science Proceedings, 2014, 2014, 126-31.	0.4	8
86	Special issue of BMC medical informatics and decision making on health natural language processing. BMC Medical Informatics and Decision Making, 2019, 19, 76.	1.5	7
87	Adapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes. AMIA Summits on Translational Science Proceedings, 2018, 2017, 281-289.	0.4	7
88	Leveraging existing corpora for de-identification of psychiatric notes using domain adaptation. AMIA Annual Symposium proceedings, 2017, 2017, 1070-1079.	0.2	7
89	Relation Extraction from Clinical Narratives Using Pre-trained Language Models. AMIA Annual Symposium proceedings, 2019, 2019, 1236-1245.	0.2	7
90	Combining human and machine intelligence for clinical trial eligibility querying. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 1161-1171.	2.2	6

#	Article	IF	Citations
91	The Initial Assessment of Daily Insulin Dose in Chinese Newly Diagnosed Type 2 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-4.	1.0	5
92	Recognizing software names in biomedical literature using machine learning. Health Informatics Journal, 2020, 26, 21-33.	1.1	5
93	Study of Pre-trained Language Models for Named Entity Recognition in Clinical Trial Eligibility Criteria from Multiple Corpora. , 2021, , .		5
94	Applying semantic-based probabilistic context-free grammar to medical language processing $\hat{a} \in A$ preliminary study on parsing medication sentences. Journal of Biomedical Informatics, 2011, 44, 1068-1075.	2.5	4
95	Towards practical temporal relation extraction from clinical notes: An analysis of direct temporal relations., 2017,,.		4
96	Introduction: the International Conference on Intelligent Biology and Medicine (ICIBM) 2016: special focus on medical informatics and big data. BMC Medical Informatics and Decision Making, 2017, 17, 77.	1.5	4
97	Parsing clinical text using the state-of-the-art deep learning based parsers: a systematic comparison. BMC Medical Informatics and Decision Making, 2019, 19, 77.	1.5	4
98	A Natural Language Processing Tool to Extract Quantitative Smoking Status from Clinical Narratives. , 2020, 2020, .		4
99	An initial study of full parsing of clinical text using the Stanford Parser. , 2011, , .		3
100	Interweaving Domain Knowledge and Unsupervised Learning for Psychiatric Stressor Extraction from Clinical Notes. Lecture Notes in Computer Science, 2017, , 396-406.	1.0	3
101	Development of a Natural Language Processing Tool to Extract Radiation Treatment Sites. Cureus, 2019, 11, e6010.	0.2	3
102	Semantic Role Labeling of Clinical Text: Comparing Syntactic Parsers and Features. AMIA Annual Symposium proceedings, 2016, 2016, 1283-1292.	0.2	3
103	Parsing Clinical Text., 2014, , .		2
104	Coronavirus: indexed data speed up solutions. Nature, 2020, 584, 192-192.	13.7	2
105	Cost-sensitive Active Learning for Phenotyping of Electronic Health Records. AMIA Summits on Translational Science Proceedings, 2019, 2019, 829-838.	0.4	2
106	Developing Customizable Cancer Information Extraction Modules for Pathology Reports Using CLAMP. Studies in Health Technology and Informatics, 2019, 264, 1041-1045.	0.2	2
107	A Comparison between Human and NLP-based Annotation of Clinical Trial Eligibility Criteria Text Using The OMOP Common Data Model. AMIA Summits on Translational Science Proceedings, 2021, 2021, 394-403.	0.4	2
108	Detecting Adverse Drug Reactions Using Inpatient Medication Orders and Laboratory Tests Data. , 2012, , .		1

#	Article	IF	CITATIONS
109	Editorial: The second international workshop on health natural language processing (HealthNLP) Tj ETQq1 1 0.78	4314 rgBT 1.5	/Overlock 1
110	Characteristics of emergency room visits in patients with facial injuries in mainland China during the 60-day level I emergency response to COVID-19. International Journal of Injury Control and Safety Promotion, 2021, 28, 403-407.	1.0	1
111	Normalizing Clinical Document Titles to LOINC Document Ontology: an Initial Study. AMIA Annual Symposium proceedings, 2020, 2020, 1441-1450.	0.2	1
112	The International Conference on Intelligent Biology and Medicine (ICIBM) 2016: putting systems biology to work. BMC Systems Biology, 2017, 11, 88.	3.0	0
113	Sirtuin 2 expression levels may predict the progression of sepsis survivors to chronic critical illness. Annals of Translational Medicine, 2021, 9, 150-150.	0.7	0
114	A Natural Language Processing Tool to Extract Quantitative Smoking Status from Clinical Narratives. Proceedings, 2020, 2020, .	0.0	0
115	A Discrete Joint Model for Entity and Relation Extraction from Clinical Notes. AMIA Summits on Translational Science Proceedings, 2021, 2021, 315-324.	0.4	O
116	From Tokenization to Self-Supervision: Building a High-Performance Information Extraction System for Chemical Reactions in Patents. Frontiers in Research Metrics and Analytics, 2021, 6, 691105.	0.9	0