Jessica R K Forrest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4920677/publications.pdf

Version: 2024-02-01

42 papers 2,453 citations

331670 21 h-index 289244 40 g-index

43 all docs

43 docs citations

43 times ranked

3377 citing authors

#	Article	IF	CITATIONS
1	Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiology Reviews, 2022, 46, .	8.6	23
2	Understanding pollen specialization in mason bees: a case study of six species. Oecologia, 2021, 195, 559-574.	2.0	9
3	Seasonality of floral resources in relation to bee activity in agroecosystems. Ecology and Evolution, 2021, 11, 3130-3147.	1.9	16
4	The earlier the better? Nesting timing and reproductive success in subalpine cavityâ€nesting bees. Journal of Animal Ecology, 2021, 90, 1353-1366.	2.8	4
5	Field design can affect cross-pollination and crop yield in strawberry (Fragaria x ananassa D.). Agriculture, Ecosystems and Environment, 2020, 289, 106738.	5.3	11
6	Defence compounds in pollen: why do they occur and how do they affect the ecology and evolution of bees?. New Phytologist, 2020, 225, 1053-1064.	7.3	60
7	Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest. Oecologia, 2020, 193, 475-488.	2.0	7
8	Small wild bee abundance declines with distance into strawberry crops regardless of field margin habitat. Basic and Applied Ecology, 2020, 44, 14-23.	2.7	12
9	Miteâ€y bees: bumble bees (<i>Bombus</i> spp., Hymenoptera: Apidae) host a relatively homogeneous mite (Acari) community, shaped by bee species identity but not by geographic proximity. Ecological Entomology, 2019, 44, 333-346.	2.2	9
10	Pollination by wild bees yields larger strawberries than pollination by honey bees. Journal of Applied Ecology, 2019, 56, 824-832.	4.0	49
11	Two-Year Bee, or Not Two-Year Bee? How Voltinism Is Affected by Temperature and Season Length in a High-Elevation Solitary Bee. American Naturalist, 2019, 193, 560-574.	2.1	38
12	Insect pollinators of haskap (<i>Lonicera caerulea</i> L.: Caprifoliaceae) in subarctic Canada. Open Agriculture, 2019, 4, 676-683.	1.7	1
13	How do sunflower pollen mixtures affect survival of queenless microcolonies of bumblebees (Bombus impatiens)?. Arthropod-Plant Interactions, 2019, 13, 517-529.	1.1	23
14	The function of floral orientation in bluebells: interactions with pollinators and rain in two species of Mertensia (Boraginaceae). Journal of Plant Ecology, 2019, 12, 113-123.	2.3	11
15	On the ecological significance of pollen color: a case study in American trout lily (<i>Erythronium) Tj ETQq1 1 0.7</i>	784314 rg	BT Overlock
16	Nesting aggregation as a predictor of brood parasitism in mason bees (<i>Osmia</i> spp.). Ecological Entomology, 2018, 43, 182-191.	2.2	16
17	Direct benefits and indirect costs of warm temperatures for highâ€elevation populations of a solitary bee. Ecology, 2017, 98, 359-369.	3.2	34
18	Explaining the apparent paradox of persistent selection for early flowering. New Phytologist, 2017, 215, 929-934.	7.3	79

#	Article	IF	Citations
19	Interactions between bee foraging and floral resource phenology shape bee populations and communities. Current Opinion in Insect Science, 2017, 21, 75-82.	4.4	123
20	Foliage affects colour preference in bumblebees (Bombus impatiens): a test in a three-dimensional artificial environment. Evolutionary Ecology, 2017, 31, 435-446.	1.2	12
21	Asteraceae Pollen Provisions Protect <i>Osmia</i> Mason Bees (Hymenoptera: Megachilidae) from Brood Parasitism. American Naturalist, 2016, 187, 797-803.	2.1	42
22	Complex responses of insect phenology to climate change. Current Opinion in Insect Science, 2016, 17, 49-54.	4.4	238
23	<i>Bees: A Natural History</i> . By Christopher O'Toole; with photographs by Edward Ross. A Peter N. Névraumont Book. Buffalo (New York): Firefly Books. \$40.00. 240 p.; ill.; index. ISBN: 978-1-77085-208-2. 2013 Quarterly Review of Biology, 2015, 90, 349-350.	0.1	0
24	Bee- to bird-pollination shifts in Penstemon: effects of floral-lip removal and corolla constriction on the preferences of free-foraging bumble bees. Evolutionary Ecology, 2015, 29, 341-354.	1.2	24
25	Contrasting patterns in species and functionalâ€trait diversity of bees in an agricultural landscape. Journal of Applied Ecology, 2015, 52, 706-715.	4.0	129
26	Plant–pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations?. Oikos, 2015, 124, 4-13.	2.7	195
27	Withinâ€plant variation in reproductive investment: consequences for selection on flowering time. Journal of Evolutionary Biology, 2015, 28, 65-79.	1.7	23
28	Plant Size, Sexual Selection, and the Evolution of Protandry in Dioecious Plants. American Naturalist, 2014, 184, 338-351.	2.1	40
29	Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. Journal of Ecology, 2011, 99, 905-913.	4.0	118
30	An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecological Monographs, 2011, 81, 469-491.	5.4	215
31	Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae). Annals of Botany, 2011, 108, 1-12.	2.9	26
32	Consequences of variation in flowering time within and among individuals of <i>Mertensia fusiformis</i> (Boraginaceae), an early spring wildflower. American Journal of Botany, 2010, 97, 38-48.	1.7	49
33	Flowering phenology in subalpine meadows: Does climate variation influence community coâ€flowering patterns?. Ecology, 2010, 91, 431-440.	3.2	121
34	Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3101-3112.	4.0	526
35	Pollinator experience, neophobia and the evolution of flowering time. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 935-943.	2.6	33
36	Background complexity affects colour preference in bumblebees. Die Naturwissenschaften, 2009, 96, 921-925.	1.6	42

#	Article	IF	CITATIONS
37	Pollen limitation and cleistogamy in subalpine Viola praemorsa. Botany, 2008, 86, 511-519.	1.0	19
38	Variability and predictability in a zooplankton community: The roles of disturbance and dispersal. Ecoscience, 2007, 14, 137-145.	1.4	12
39	Immigration and zooplankton community responses to nutrient enrichment: a mesocosm experiment. Oecologia, 2006, 150, 119-131.	2.0	21
40	The Chloropidae (Diptera) of the Gal \tilde{A}_i pagos Islands, Ecuador. Insect Systematics and Evolution, 2003, 34, 265-280.	0.7	7
41	A new species of Elachiptera Macquart from the Gal \tilde{A}_i pagos Islands, Ecuador, and the taxonomic status of Ceratobarys Coquillett (Diptera: Chloropidae). Zootaxa, 2002, 98, 1.	0.5	11
42	Quantifying pollen deposition with macro photography and 'stigmagraphs'. Journal of Pollination Ecology, 0, 20, 13-21.	0.5	3