Konstantin Balashev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4920214/publications.pdf

Version: 2024-02-01

55	992	16	30
papers	citations	h-index	g-index
55	55 docs citations	55	1553
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Water in Contact with Extended Hydrophobic Surfaces: Direct Evidence of Weak Dewetting. Physical Review Letters, 2003, 90, 086101.	7.8	224
2	Langmuir and Langmuir-Blodgett Films of Amphiphilic Hexa-peri-hexabenzocoronene: New Phase Transitions and Electronic Properties Controlled by Pressure. Chemistry - A European Journal, 2001, 7, 4894-4901.	3.3	72
3	Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy. Biochimie, 2001, 83, 387-397.	2.6	57
4	Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part II. Surface sensitive synchrotron X-ray scattering. Biochimie, 2001, 83, 399-408.	2.6	48
5	Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 154-163.	4.7	48
6	Polymeric ion-imprinted nanoparticles for mercury speciation in surface waters. Microchemical Journal, 2014, 113, 42-47.	4.5	46
7	Surface Pressure and Elasticity of Hydrophobin HFBII Layers on the Air–Water Interface: Rheology Versus Structure Detected by AFM Imaging. Langmuir, 2013, 29, 6053-6067.	3.5	32
8	Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. Journal of Photochemistry and Photobiology B: Biology, 2013, 126, 97-104.	3.8	31
9	Atomic force microscope visualization of lipid bilayer degradation due to action of phospholipase A2 and Humicola lanuginosa lipase. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 90-99.	2.6	30
10	Effect of gold nanoparticles on the photocatalytic efficiency of ZnO films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 240-247.	4.7	29
11	Spreading kinetics of dimyristoylphosphatidylcholine liposomes at the air/water interface below and above the main phase-transition temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 102, 159-165.	4.7	28
12	Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 106-115.	4.7	24
13	Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 366-374.	1.9	23
14	Foam production – Ratio between foaminess and rate of foam decay. Journal of Colloid and Interface Science, 2012, 379, 144-147.	9.4	23
15	Microstructural investigations of carbon foams derived from modified coal-tar pitch. Micron, 2016, 89, 34-42.	2.2	18
16	Humicola lanuginosa lipase hydrolysis of mono-oleoyl-rac-glycerol at the lipid–water interface observed by atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1615, 93-102.	2.6	17
17	Phospholipase A2-Induced Remodeling Processes on Liquid-Ordered/Liquid-Disordered Membranes Containing Docosahexaenoic or Oleic Acid: A Comparison Study. Langmuir, 2016, 32, 1756-1770.	3.5	14
18	The linker histone in Saccharomyces cerevisiae interacts with actin-related protein 4 and both regulate chromatin structure and cellular morphology. International Journal of Biochemistry and Cell Biology, 2015, 59, 182-192.	2.8	13

#	Article	IF	CITATIONS
19	Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: An atomic force microscopy (AFM) approach. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 191-198.	2.6	12
20	Vipoxin and Its Components. Advances in Protein Chemistry and Structural Biology, 2012, 87, 117-153.	2.3	12
21	Acceleration effect of copper(II) ions on the rate of citrate synthesis of gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 39-48.	4.7	12
22	Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air–water interface and liquid Atomic Force Microscopy (AFM) imaging. Colloids and Surfaces B: Biointerfaces, 2011, 88, 582-586.	5.0	11
23	Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems. AAPS PharmSciTech, 2014, 15, 939-946.	3. 3	11
24	Low pH Modulates the Macroorganization and Thermal Stability of PSII Supercomplexes in Grana Membranes. Biophysical Journal, 2015, 108, 844-853.	0.5	11
25	Mechanical, wear and corrosion behavior of CrN/TiN multilayer coatings deposited by low temperature unbalanced magnetron sputtering for biomedical applications. Materials Today: Proceedings, 2018, 5, 16012-16021.	1.8	11
26	Sterically stabilized liposomes as a platform for salinomycin metal coordination compounds: physicochemical characterization and in vitro evaluation. Journal of Drug Delivery Science and Technology, 2013, 23, 215-223.	3.0	10
27	Effects of Ca2+ ions on bestrophin-1 surface films. Colloids and Surfaces B: Biointerfaces, 2017, 149, 226-232.	5.0	10
28	Synthesis of TiO2 on SnO2 bicomponent system and investigation of its structure and photocatalytic activity. Materials Chemistry and Physics, 2018, 220, 249-259.	4.0	10
29	Comparative Study of Polyacryloylacetone Monolayers at Dichloromethaneâ^'Water and Airâ^'Water Interfaces. Langmuir, 1997, 13, 5362-5367.	3 . 5	9
30	Propagation of Photoinduced Surface Pressure Perturbation along a Mixed Benzospiropyranâ^Octadecanol Monolayer. Langmuir, 1997, 13, 5373-5377.	3.5	8
31	Savinase proteolysis of insulin Langmuir monolayers studied by surface pressure and surface potential measurements accompanied by atomic force microscopy (AFM) imaging. Journal of Colloid and Interface Science, 2011, 360, 654-661.	9.4	8
32	Effects of Ca2+, Glu and GABA on hBest1 and composite hBest1/POPC surface films. Colloids and Surfaces B: Biointerfaces, 2018, 161, 192-199.	5.0	8
33	Polyzwitterionic copolymer nanoparticles loaded in situ with metoprolol tartrate: synthesis, morphology and drug release properties. Journal of Polymer Research, 2013, 20, 1.	2.4	7
34	Dependence of Plasmon Spectra of Small Gold Nanoparticles from Their Size: an Atomic Force Microscopy Experimental Approach. Plasmonics, 2020, 15, 371-377.	3.4	7
35	Properties of \hat{l}^2 -carotene and retinoic acid in mixed monolayers with dipalmitoylphosphatidylcholine (DPPC) and Solutol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 209-218.	4.7	6
36	Monolayer kinetic model of formation of β-cyclodextrin–β-carotene inclusion complex. Colloids and Surfaces B: Biointerfaces, 2015, 135, 542-548.	5.0	6

#	Article	IF	CITATIONS
37	PIA2 Polymorphism in Glycoprotein IIb/IIIa Modulates the Morphology and Nanomechanics of Platelets. Clinical and Applied Thrombosis/Hemostasis, 2017, 23, 951-960.	1.7	6
38	On the growth of pneumatic foams. European Physical Journal E, 2013, 36, 13.	1.6	5
39	Dependence of the textural properties and surface species of ZnO photocatalytic materials on the type of precipitating agent used in the hydrothermal synthesis. Bulletin of Materials Science, 2017, 40, 483-492.	1.7	5
40	Photochemical behaviour of polyacryloylacetone; and polyethylacrylacetate monolayers at the air-water interface. Colloid and Polymer Science, 2000, 278, 301-311.	2.1	4
41	Delta-Comb Potential in Modeling Three-Phase Contact Line (TPCL) on Periodically Patterned Surfaces. Journal of Physical Chemistry B, 2012, 116, 13248-13253.	2.6	4
42	Synthesis and characterization of novel drug delivery nanoparticles based on polyzwitterionic copolymers. European Polymer Journal, 2013, 49, 637-645.	5.4	4
43	Competitive adsorption of bovine serum albumin and n-dodecyl- \hat{l}^2 -d-maltoside in foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 286-298.	4.7	3
44	Design and Concept of Polyzwitterionic Copolymer Microgel Drug Delivery Systems In Situ Loaded with Non-steroidal Anti-inflammatory Ibuprofen. AAPS PharmSciTech, 2017, 18, 166-174.	3.3	3
45	Desiccationâ€induced alterations in surface topography of thylakoids from resurrection plantHaberlea rhodopensisstudied by atomic force microscopy, electrokinetic and optical measurements. Physiologia Plantarum, 2019, 166, 585-595.	5.2	3
46	Monolayer kinetic model of formation of gold nanoparticles by reducing agents hexadecylaniline or bovine serum albumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 1-7.	4.7	2
47	INFLUENCE OF pH AND PRESENCE OF Cu ²⁺ IONS ON THE PROPERTIES OF POLYACRYLOYLACETONE (PAA)MONOLAYERS. Journal of Dispersion Science and Technology, 1997, 18, 661-681.	2.4	1
48	Interfacial photochemical tautomerization in polyacryloylacetone monolayers. Colloid and Polymer Science, 1998, 276, 984-991.	2.1	1
49	Dependence of the electrical and morphological properties on the Ti and Al content in Mo-based ohmic contacts for III–V nitrides. , 2012, , .		1
50	Interfacial behavior of lipid nanocapsules spread on model membrane monolayers. Colloid and Polymer Science, 2014, 292, 1307-1318.	2.1	1
51	Ti- and Cr-based hard coatings obtained at low temperatures by unbalanced magnetron sputtering. Journal of Physics: Conference Series, 2018, 992, 012030.	0.4	1
52	Study of the mechanical properties of Ti-and Cr-based multicomponent hard coatings. MATEC Web of Conferences, 2018, 145, 02003.	0.2	1
53	Action of Vipoxin and its separated components on monomolecular film of Dilauroylphosphatidylcholine at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 196-202.	4.7	1
54	Photoconductance Effects in Bilayer Lipid Membranes, Containing Amphiphilic Hexadecylbenzospiropyrane Derivative. Molecular Crystals and Liquid Crystals, 2000, 352, 37-43.	0.3	0

#	Article	IF	CITATIONS
55	The enzymatic action of Vipoxin on insoluble long-chain phospholipid Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127469.	4.7	O