Emmanuelle J Javaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4920107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature, 2010, 463, 934-938.	13.7	274
2	TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2004, 2, 121-132.	1.1	219
3	Challenges in evidencing the earliest traces of life. Nature, 2019, 572, 451-460.	13.7	156
4	Recognizing and interpreting the fossils of early eukaryotes. Origins of Life and Evolution of Biospheres, 2003, 33, 75-94.	0.8	146
5	Early fungi from the Proterozoic era in Arctic Canada. Nature, 2019, 570, 232-235.	13.7	135
6	Cyanobacteria evolution: Insight from the fossil record. Free Radical Biology and Medicine, 2019, 140, 206-223.	1.3	116
7	Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. Journal of Paleontology, 2017, 91, 199-229.	0.5	115
8	The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age. Earth-Science Reviews, 2018, 176, 68-86.	4.0	109
9	Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El MreÃ⁻ti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Research, 2017, 291, 63-82.	1.2	69
10	Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nature Communications, 2017, 8, 14890.	5.8	56
11	Extreme life on Earth—past, present and possibly beyond. Research in Microbiology, 2006, 157, 37-48.	1.0	54
12	Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and) Tj ETQq0	0 Q 9gBT	Oværlock 10
13	The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities. Astrobiology, 2017, 17, 595-611.	1.5	44
14	Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLoS ONE, 2018, 13, e0200323.	1.1	41
15	Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): Diversity and biostratigraphic significance. Precambrian Research, 2019, 321, 349-374.	1.2	41
16	Raman Characterization of the UV-Protective Pigment Gloeocapsin and Its Role in the Survival of Cyanobacteria. Astrobiology, 2015, 15, 843-857.	1.5	39
17	The earliest evidence for modern-style plate tectonics recorded by HP–LT metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo. Scientific Reports, 2018, 8, 15452.	1.6	38

18The Early Eukaryotic Fossil Record. Advances in Experimental Medicine and Biology, 2007, 607, 1-19.0.836

Emmanuelle J Javaux

#	Article	IF	CITATIONS
19	Habitability: from stars to cells. Astronomy and Astrophysics Review, 2010, 18, 383-416.	9.1	23
20	Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures. Microbial Genomics, 2018, 4, .	1.0	23
21	Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nature Communications, 2022, 13, 146.	5.8	18
22	Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada. Emerging Topics in Life Sciences, 2018, 2, 247-255.	1.1	17
23	Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews, 2019, 215, 1.	3.7	14
24	Shale-hosted biota from the Dismal Lakes Group in Arctic Canada supports an early Mesoproterozoic diversification of eukaryotes. Journal of Paleontology, 2021, 95, 1113-1137.	0.5	12
25	A constrained SSU-rRNA phylogeny reveals the unsequenced diversity of photosynthetic Cyanobacteria (Oxyphotobacteria). BMC Research Notes, 2018, 11, 435.	0.6	9
26	Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium. Microbial Ecology, 2017, 74, 33-53.	1.4	7
27	Characterization of the Halochromic Gloeocapsin Pigment, a Cyanobacterial Biosignature for Paleobiology and Astrobiology. Astrobiology, 2022, 22, 735-754.	1.5	4
28	Microfossils from early Earth. Nature Geoscience, 2011, 4, 663-665.	5.4	2
29	Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy. Astrobiology, 0, , .	1.5	1