
Urartu Ozgur Safak Seker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4919828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of synthetic biological devices for detection and targeting human diseases. , 2022, , 251-269.		Ο
2	Design and applications of self-assembled soft living materials using synthetic biology. , 2022, , 361-372.		0
3	Combating Infectious Diseases with Synthetic Biology. ACS Synthetic Biology, 2022, , .	1.9	1
4	Neutralizing antibody response and associated factors in Coronavirus-19 disease (COVID-19) up to one month. Biyokimya Dergisi, 2022, .	0.1	0
5	A Recombinase-Based Genetic Circuit for Heavy Metal Monitoring. Biosensors, 2022, 12, 122.	2.3	11
6	A Highly Potent SARS-CoV-2 Blocking Lectin Protein. ACS Infectious Diseases, 2022, 8, 1253-1264.	1.8	20
7	Engineered Bacteria with Genetic Circuits Accumulating Nanomagnets as MRI Contrast Agents. Small, 2022, 18, e2200537.	5.2	6
8	A Repeater Antenna System Utilizing Genetically Modified Bacteria for Multiscale Communications. , 2022, , .		2
9	Engineering of biofilms with a glycosylation circuit for biomaterial applications. Biomaterials Science, 2021, 9, 3650-3661.	2.6	8
10	Interaction of microbial functional amyloids with solid surfaces. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111547.	2.5	5
11	Genetic circuits combined with machine learning provides fast responding living sensors. Biosensors and Bioelectronics, 2021, 178, 113028.	5.3	16
12	A Multiscale Communications System Based on Engineered Bacteria. IEEE Communications Magazine, 2021, 59, 62-67.	4.9	6
13	SARS-CoV-2 Detection with De Novo-Designed Synthetic Riboregulators. Analytical Chemistry, 2021, 93, 9719-9727.	3.2	13
14	A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites <i>via</i> ball milling of cellulose. Green Chemistry, 2020, 22, 455-464.	4.6	35
15	Characterization of local SARS-CoV-2 isolates and pathogenicity in IFNARâ^'/- mice. Heliyon, 2020, 6, e05116.	1.4	17
16	Ultrasonication for Environmentally Friendly Preparation of Antimicrobial and Catalytically Active Nanocomposites of Cellulosic Textiles. ACS Sustainable Chemistry and Engineering, 2020, 8, 18879-18888.	3.2	21
17	A Highly Potent TACC3 Inhibitor as a Novel Anticancer Drug Candidate. Molecular Cancer Therapeutics, 2020, 19, 1243-1254.	1.9	19
18	Genetic Logic Gates Enable Patterning of Amyloid Nanofibers. Advanced Materials, 2019, 31, e1902888.	11.1	22

#	Article	IF	CITATIONS
19	Synthetic Genetic Circuits for Self-Actuated Cellular Nanomaterial Fabrication Devices. ACS Synthetic Biology, 2019, 8, 2152-2162.	1.9	13
20	Biomineralization of Calcium Phosphate Crystals Controlled by Protein–Protein Interactions. ACS Biomaterials Science and Engineering, 2019, 5, 4750-4763.	2.6	13
21	Bioengineering: Genetic Logic Gates Enable Patterning of Amyloid Nanofibers (Adv. Mater. 39/2019). Advanced Materials, 2019, 31, 1970281.	11.1	0
22	Genetic Circuits To Detect Nanomaterial Triggered Toxicity through Engineered Heat Shock Response Mechanism. ACS Synthetic Biology, 2019, 8, 2404-2417.	1.9	12
23	Cellular Biocatalysts Using Synthetic Genetic Circuits for Prolonged and Durable Enzymatic Activity. ChemBioChem, 2019, 20, 1799-1809.	1.3	8
24	A Self-Actuated Cellular Protein Delivery Machine. ACS Synthetic Biology, 2019, 8, 686-696.	1.9	11
25	Self-assembly of bacterial amyloid protein nanomaterials on solid surfaces. Journal of Colloid and Interface Science, 2018, 520, 145-154.	5.0	24
26	Autonomous Synthesis of Fluorescent Silica Biodots Using Engineered Fusion Proteins. ACS Omega, 2018, 3, 585-594.	1.6	15
27	Cellular Biosensors with Engineered Genetic Circuits. ACS Sensors, 2018, 3, 13-26.	4.0	73
28	Genetically-Tunable Mechanical Properties of Bacterial Functional Amyloid Nanofibers. Langmuir, 2017, 33, 4337-4345.	1.6	22
29	Genetically encoded conductive protein nanofibers secreted by engineered cells. RSC Advances, 2017, 7, 32543-32551.	1.7	36
30	Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic–Organic Interfaces and Electrical Conductivity. ACS Synthetic Biology, 2017, 6, 266-275.	1.9	71
31	Biocatalytic protein membranes fabricated by electrospinning. Reactive and Functional Polymers, 2016, 103, 26-32.	2.0	13
32	Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014, 13, 515-523.	13.3	329
33	Engineered Peptides for Nanohybrid Assemblies. Langmuir, 2014, 30, 2137-2143.	1.6	12
34	Thermodynamics of Engineered Gold Binding Peptides: Establishing the Structure–Activity Relationships. Biomacromolecules, 2014, 15, 2369-2377.	2.6	22
35	Biomedical and Biochemical Tools of Förster Resonance Energy Transfer Enabled by Colloidal Quantum Dot Nanocrystals for Life Sciences. , 2013, , 531-560.		0
36	Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer. Nanoscale, 2013, 5, 7034.	2.8	8

#	Article	IF	CITATIONS
37	Peptide-Mediated Constructs of Quantum Dot Nanocomposites for Enzymatic Control of Nonradiative Energy Transfer. Nano Letters, 2011, 11, 1530-1539.	4.5	38
38	Assembly Kinetics of Nanocrystals via Peptide Hybridization. Langmuir, 2011, 27, 4867-4872.	1.6	10
39	Spatially Selective Assembly of Quantum Dot Light Emitters in an LED Using Engineered Peptides. ACS Nano, 2011, 5, 2735-2741.	7.3	26
40	Material Binding Peptides for Nanotechnology. Molecules, 2011, 16, 1426-1451.	1.7	165
41	In vitro labeling of hydroxyapatite minerals by an engineered protein. Biotechnology and Bioengineering, 2011, 108, 1021-1030.	1.7	41
42	Quantum dot emitters integrated with smart peptides. , 2009, , .		0
43	Quantitative Affinity of Genetically Engineered Repeating Polypeptides to Inorganic Surfaces. Biomacromolecules, 2009, 10, 250-257.	2.6	73
44	Effect of Molecular Conformations on the Adsorption Behavior of Gold-Binding Peptides. Langmuir, 2008, 24, 12440-12445.	1.6	190
45	Multi-material specific, targeted self-assembly of nanocrystal emitters using genetically engineered peptides on optoelectronic microchips. , 2008, , .		Ο
46	A novel knowledge-based approach to design inorganic-binding peptides. Bioinformatics, 2007, 23, 2816-2822.	1.8	129
47	Adsorption Behavior of Linear and Cyclic Genetically Engineered Platinum Binding Peptides. Langmuir, 2007, 23, 7895-7900.	1.6	126
48	Statistical Modeling of β-galactosidase Inhibition During Lactose Hydrolysis. Food Biotechnology, 2006, 20, 79-91.	0.6	5
49	Evolutionary engineering of multiple-stress resistant. FEMS Yeast Research, 2005, 5, 569-578.	1.1	176
50	Determination of β-glucan content of cereals with an amperometric glucose electrode. European Food Research and Technology, 2002, 215, 538-541.	1.6	9